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Abstract. Nowadays, PLA is increasingly used as a packaging material, therefore it may 

appear in the petrol-based polymer waste stream. However, with the today’s mechanical 

recycling technologies PLA and PET bottles cannot be easily or cheaply separated. Therefore, 

our goal was to investigate the mechanical, morphological and thermal properties of different 

PET and PLA compounds in a wide range of compositions. We made different compounds 

from poly(ethylene-terephthalate) (PET) and poly(lactic acid) (PLA) by extrusion, and 

injection molded specimens from the compounds. We investigated the mechanical properties 

and the phase morphology of the samples and the thermal stability of the regranulates. PET and 

PLA are thermodynamically immiscible, therefore we observed a typical island-sea type 

morphology in SEM micrographs. When PLA was added, the mechanical properties (tensile 

strength, modulus, elongation at break and impact strength) changed significantly. The 

Young’s modulus increased, while elongation at break and impact strength decreased with the 

increase of the weight fraction of PLA. The TGA results indicated that the incorporation of 

PLA decreased the thermal stability of the PET/PLA blends. 

1 Introduction 

More and more polymers are produced and processed annually but biopolymers still only amount to 

slightly less than 1.5 wt% of all polymers produced [1, 2]. Biron [3] predicted that by 2040 the same 

amount of biopolymers will be produced as petroleum-based polymers and then more biopolymers 

will be produced than petroleum-based polymers. Most petroleum-based polymers and biopolymers 

are used to produce packaging materials, which become waste in a very short time [1, 2, 4]. There are 

several ways to recycle polymers—mechanical and chemical recycling, and in the case of biopolymers, 

also biological recycling [5]. The population and selective waste collection are not prepared to sort 

these polymers, therefore they can mix during recycling. The question is what happens when they are 

processed together. How do their mechanical, morphological and rheological properties change? 

There are publications about blends of petroleum-based and biopolymers but some of these [6-8] 

aimed to improve the unfavourable properties of PLA (e.g. rigidity, low tolerance of heat) [9, 10], 

usually with the addition of polyethylene. The blends created this way are immiscible, therefore other 
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additives are necessary. Only a few authors examined the effect PLA as a „contaminant” [11-13], and 

only in a very narrow range. 

For example, PLA and PET bottles cannot be easily or cheaply sorted, because both are 

transparent and very similar, therefore manual sorting based on visual appearance is not possible. The 

density of PET and PLA are similar, higher than water, therefore in the float-sink separation process, 

the PLA particles will follow the PET flakes to the bottom of the flotation tank. Therefore, the PLA 

fragments and the PET waste stream will be recycled together [14, 15]. The most widely used 

technique for the automated sorting of plastics [16] is Fourier Transform near-infrared (FT-NIR) 

spectroscopy. However the reports [14] estimate that the efficiency of the separation of PLA bottles 

from PET bottles is 86–99.6 % for this method. 

The presence of biopolymers can significantly modify the properties of PET [11, 17]. The 

processing temperature of PET is around 100 °C higher than that of PLA therefore PLA starts to 

degrade, which leads to a yellowing of the product. Additionally, PLA has a different glass transition 

temperature, which results in opaqueness or haziness when PET and PLA are processed together. PLA 

and PET are thermodynamically immiscible, therefore holes, peaks or clusters will probably occur in 

the products [14]. 

The analysis of statistical data [1, 2] indicates that nowadays it is reasonable to examine the effect 

of low biopolymer “contamination” (<5 wt%). We, however, are of the opinion that as biopolymers 

are more and more widely used, the 20 wt%–80 wt% range should also be examined for the future, as 

should the effect of a small amount of petroleum-based polymer contamination of biopolymers.  

Therefore, our goal was to investigate the mechanical, morphological and thermal properties of 

different PET and PLA compounds in a wide composition range. 

2 Experimental 

2.1 Materials 

We used virgin PET type NeoPET 80 (intrinsic viscosity (IV): 0.80 dl/g, density: 1.34 g/cm
3
) supplied 

by NeoGroup (Lithuania) as a petroleum-based component, and virgin PLA type Ingeo 3100HP (MFR 

(210°C, 2.16 kg): 24 g/10 min, density: 1.24 g/cm
3
), supplied by NatureWorks LLC. (USA), as a 

biobased component. 

2.2 Material preparation and processing 

Before processing (extrusion and injection molding), the materials were dried at 140°C in a Faithful 

WGLL-125 BE hot air drying oven for 6 hours. Thirteen different PET/PLA compounds (regranulates) 

(100/0, 99/1, 97/3, 95/5 85/15, 75/25, 50/50, 25/75, 15/85, 5/95, 3/97, 1/99, 0/100 wt/wt%) were 

produced with a Labtech Scientific LTE 26-44 co-rotating twin-screw extruder. The screw diameter of 

the extruder was 26 mm and the length/diameter (L/D) ratio was 44. The temperature profile of the 

extruder (from intake zone to die) was 235-240-245-250-255-260-265-270-275-270-265°C. The 

rotating speed of the extruder screws was 50 rpm and the melt pressure was 30-50 bar. 

The injection molded samples were made with an Arburg Allrounder 370 S 700-290 injection 

molding machine. The injection rate was 50 cm
3
/s, holding pressure was 800 bar, holding time was 20 

s, residual cooling time was 40 s, and melt and mold temperature were 280°C and 30°C, respectively. 

The mechanical tests were carried out on ISO standard dumbbell-shaped tensile specimens. 

2.3 Methods 

Tensile tests were carried out on a Zwick Z005 universal testing machine. We calculated the tensile 

modulus between 0.05% and 0.25% strain with a crosshead speed of 1 mm/min, and determined 

tensile strength, breaking strength, elongation at the maximum force and elongation at break with a 
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crosshead speed of 10 mm/min. The measurements were performed on ISO 527-2/1A dumbbell-

shaped specimens with an overall length of 170 mm and a cross-section of 4 mm × 10 mm. In every 

measurement, we tested 5 specimens, and calculated the average value and standard deviation. 

Impact strength was determined with the Charpy impact test on a Ceast Resil Impactor Junior 

impact tester, with a pendulum of 2 J. The measurements were performed on 2 mm notched ISO 179-

1/1eA specimens with a length of 80 mm and a cross-section of 4 mm × 10 mm. The tests were 

performed at room temperature and at a relative humidity of 50%. In every measurement, we tested 10 

specimens, and calculated the average and standard deviation. 

The morphology of the blends was studied with a scanning electron microscope (Jeol JSM 

6380LA). The SEM micrographs were taken from cryo-fractured surfaces. 

Thermogravimetric analysis (TGA) was performed on samples of about 10 mg with a TA 

Instruments Q500 instrument over 40-600°C in an industrial grade air (78% N2, 21% O2, 1% other) 

atmosphere (60 ml/min) with a 10 °C/min heating speed. 

3 Results and discussion 

3.1 Mechanical properties of the PET/PLA blends 

Figure 1 shows the tensile stress-strain curves of the PET and the PLA. The curves show that the PLA 

was rigid and PET was flexible after the neck formation. 

 

 

Figure 1. Tensile stress-strain curves of 100/0 and 0/100 PET/PLA samples 

Figure 2 shows the mechanical properties of the injection molded samples of the different 

PET/PLA blends. The tensile strength values were similar in the case of small (≤25 wt%) and large 

(≥85 wt%) PLA content. However, it showed a lower value in 50/50 PET/PLA composition. When the 

weight fraction of PLA was increased, the elongation at the maximum force did not change initially, 

but then gradually decreased and was finally close to a constant value. Breaking strength in the case of 

low PLA content (≤25 wt%) was lower than in the other cases. It can be explained by the fact that the 

specimens were broken after the neck formation when the PLA content was small, while in all other 

cases, they were broken rigidly. In the case of low PLA content (≤5 wt%), elongation at break did not 

change, compared to pure PET, but when the weight fraction of PLA was further increased, it 

decreased sharply and stayed low. In addition to the presence of a rigid component (PLA), the 

degradation of PLA or both PLA and PET, and the increased droplet size (see Figure 3a–d) may also 

have led to a decrease in elongation at break when the weight fraction of PLA was increased. We 

observed that the Young’s modulus increased linearly, according to the linear rule of mixtures, with 

the increase of the weight fraction of PLA. On the other hand, as the weight fraction of PLA was 

increased, Charpy impact strength seemed to change along a parabola. 1 wt% PET or PLA 
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contamination did not affect Charpy impact strength, but in all other cases, it decrease significantly 

compared to the pure raw materials. This is due to the poor adhesion between the PET and the PLA, 

and to the fact that dispersed droplets are present in the blends as failures. La Mantia et al. [11] had 

similar results when they investigated the 99.5/0.5, 99/1, 98/2 and 95/5 PET/PLA blends. 

    

 

Figure 2. Tensile strength and elongation at the maximum force (a), breaking strength and elongation at break (b), 

Young’s modulus and Charpy impact strength (c) in PET/PLA blends depending on the weight fraction of PLA 

3.2 Morphological structure of the blends/Phase morphology of the blends 

We also studied the structure of the blends by SEM (Figure 3). The micrographs were taken from 

cryo-fractured surfaces. The SEM micrographs indicated that a dispersed phase structure (island-sea 

type morphology) was formed for each composition, only the droplet size and the matrix were 

different. The SEM micrographs showed a typical morphology of immiscible polymer blends if one of 

the components had a well-defined spherical shape, very broad size distribution and a smooth fracture 

surface. As PLA content was increased, up to 25 wt% of PLA, the diameter of the dispersed PLA 

particles in the PET matrix increased from a few tenths of a micron to a few microns. In the case of a 

symmetrical composition (50 wt% of PET and PLA), it is not possible to determine which phase 

constitutes the matrix and which is the dispersed phase. However, according to the literature [18], in 

this case the polymer with lower viscosity forms the matrix, in our case the PLA. When the weight 

fraction of the PLA was further increased, it formed the matrix and PET was the dispersed phase. 

Torres-Huerta et al. [12] also observed a typical island-sea type morphology in PET/PLA (95/5, 90/10 

and 85/15) blends. 
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Figure 3. Changes in the morphology of PET/PLA blends a) 1 wt% PLA, b) 25 wt% PLA, c) 50 wt% PLA, 

d) 95 wt% PLA 

3.3 Thermal stability of the blends 

The TGA and the corresponding first derivative TGA (DTG) curves of PET/PLA blends are shown in 

Figure 4. The degradation onset temperature (the temperature at which 5 wt% degradation occurred) 

of the 100/0, 99/1, 97/3, 95/5 85/15, 75/25, 50/50, 25/75, 15/85, 5/95, 3/97, 1/99 and 0/100 PET/PLA 

blends were 371 °C, 369 °C, 364 °C, 358 °C, 347 °C, 342 °C, 324 °C, 324 °C, 315 °C, 318 °C, 310 °C, 

315 °C and 318 °C, respectively. The maximum degradation temperature (the peak temperature of the 

DTG curve) of the 100/0, 99/1, 97/3, 95/5 85/15, 75/25, 50/50, 25/75, 15/85, 5/95, 3/97, 1/99 and 

0/100 PET/PLA blends were 426 °C, 416 °C, 424 °C, 425 °C, 424 °C, 424 °C, 354 °C, 358 °C, 

355 °C, 359 °C, 353 °C, 351 °C and 360 °C, respectively. The results indicated that the thermal 

degradation of the PET/PLA blends has two maximum degradation temperatures, about 355 °C and 

424 °C, corresponding to PLA and PET, respectively. These results show that adding PLA to PET 

decreased the thermal stability of the blends. McLauchlin and Ghita [19] had similar results in a 

nitrogen atmosphere when they investigated PET/PLA blends which contained 0.5, 1, 2, 5, 10 and 20 

wt% of PLA. 

 

Figure 4. TGA (a) and DTG (b) curves of the different PET/PLA blends 
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4 Conclusions 

We investigated the mechanical and morphological properties, and the thermal stability of different 

PET/PLA blends. The stress-strain curves showed that PET was elastic and PLA was rigid. As the 

weight fraction of PLA was increased from 0% to 100%, the Young’s modulus increased from 2109 

MPa to 2990 MPa, while elongation at break decreased from 180 % to 4 %. The tensile strength 

values were similar in the case of low (≤25 wt%) and high (≥85 wt%) PLA content. In SEM 

micrographs, we observed a typical island-sea type morphology in all the PET/PLA blends. Therefore, 

the two components are thermodynamically incompatible, at least in the concentrations investigated. 

The thermal stability of the blends was decreased when PLA was added to the blends. The result 

indicate that blends with more than 3 wt% PLA contamination or more than 1 wt% PET 

contamination would probably result in a lot of faulty products, due to the immiscibility of the 

components. 
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