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ABSTRACT 

Small angle X-ray scattering (SAXS) and polarized Raman spectroscopy were used to 

examine the structure of unidirectional all-polypropylene composites prepared at 

different consolidation temperatures. Analysis of the anisotropy of the X-ray scattering 

pattern provided a way to quantify the disorientation of the crystallites and a direct 

correlation has been found between a measure of overall orientation and the Young’s 

modulus of the composites. In the case of the Raman spectroscopic measurements, the 

molecular orientation state of the reinforcing PP fibres were evaluated by classical least 

squares (CLS) modelling with real reference spectra. Strong correlation was evinced 

between the estimated relative degree of orientation of the reinforcing fibres and the 

Young’s modulus of the multi-layered all-polypropylene composites. Based on these 
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results, both SAXS and Raman spectroscopy are suitable methods to predict the 

mechanical performance of all-polymer composites, being especially sensitive to 

manufacturing and application conditions, in a non-destructive way. 

Keywords: A. Polymer fibres; A. Polymer-matrix composites (PMCs); B. Mechanical 

properties; D. Non-destructive testing 

1 Introduction  

In self-reinforced polymers (SRPs), the reinforcement and matrix are composed of 

the same polymer or polymers belonging to the same polymer family. The intensive 

stretching of extruded tapes or fibres results in high degree of molecular orientation of 

the polymer chains (both in crystalline and amorphous phase) and by this means 

polymer fibres of high strength and modulus can be manufactured. The high-

performance polymer fibres can be embedded in a matrix polymer by film-stacking [1] 

or co-extrusion technologies [2,3] serving as suitable reinforcing substances and 

creating an SRP composite material with low density, enhanced strength, stiffness and 

impact resistance compared to the unreinforced polymer [4]. By selective melting via 

hot-compaction [5] or partial dissolution of the skins [6] of the polymer fibres to form 

the matrix phase, so called single-polymer composites can be created [7]. During 

production of self-reinforced composites, there are various parameters influencing the 

properties of the finally formed composite. Besides the ratio and characteristics of the 

constituents (matrix polymer and reinforcement), the most crucial parameter is the 

achieved consolidation quality. Full compaction means the least void content and the 

theoretical maximum density is achieved. The most relevant parameters affecting the 

consolidation quality are the type and viscosity of the matrix, the type and structure 

(fibrous, knitted, woven, etc.) of the reinforcement, the volume fraction of the 

reinforcement, the temperature, pressure and holding-time applied during hot-pressing 
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and the cooling speed. It has to be noted, that in contrast to conventional glass or carbon 

fibre reinforced thermoplastic composites (the consolidation quality of which can be 

improved by increasing the processing temperature and thus decreasing the viscosity of 

the matrix), in the case of SRCs the melting temperature of the reinforcing polymer 

fibre or tape determines the upper limit of the applicable temperature. Therefore, the 

basis of all SRP techniques is to set a suitable processing window which enables the 

partial fusing of the fibres (hot-compaction technique) or exploits the difference 

between the melting temperatures (Tm) of the structurally similar reinforcement and 

matrix polymer. Nevertheless, the increased processing temperature leads to molecular 

relaxation of fibres and consequently to loss in reinforcing efficiency [8]. In case of all-

poly(ethylene terephthalate) (all-PET) composites increased processing temperature and 

holding time have found to cause hydrolytic degradation, embrittlement and noticeable 

deterioration of the mechanical properties of the polyester components [9,10]. The 

effect of processing parameters on the mechanical properties was first presented by 

Ward and Hine for polyethylene (PE) based composites [11] and by Alcock et al. for 

all-polypropylene composites (all-PPCs) [12,13]. These investigations show that the 

consolidation quality of all-PPCs improves as a function of increasing processing 

temperature, as also revealed by tensile, flexural and peel strength, modulus and density 

measurements by Izer et al. [14]. The modulus and strength values pass through a 

maximum, while the energy absorption capability (perforation energy) decreases with 

increasing consolidation temperature. Therefore, it is essential to find the optimal 

processing conditions, where the SRCs are well-consolidated and accompanied with 

excellent interlaminar strength (preferably in a presence of transcrystalline layer), and 

have prominent mechanical performance with good energy absorption at the same time. 

The optimization and monitoring of the processing parameters are crucial in respect to 
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the SRPs quality [3,10,15,16], nevertheless, for the quality assurance of SRP 

prefabricates or parts during service only destructive or semi-destructive tests are 

currently available. Quality of the products was mainly assessed by different kind of 

mechanical loading coupled with further in situ (such as acoustic emission [17]) or post 

mortem (e.g. light and scanning electron microscopy) failure inspections so far. Non-

destructive techniques were rarely used for quality management, though ultrasonic 

testing [18] and X-ray microcomputed tomography [19] as pioneer investigations can 

be found in the literature. This is still an open issue, especially if in-line quality 

inspection is the target [4]. 

In this work, multi-layered unidirectional all-PPCs, composed of highly stretched 

isotactic polypropylene (iPP) multifilament fibres and propylene-ethylene random 

copolymer (rPP) matrix, were investigated. The tensile modulus of the reinforcing iPP 

fibres basically depends on the fraction of chain segments that are oriented (both 

amorphous and crystalline orientation) and the degree of orientation along the load 

direction. From combined Wide Angle X-ray Scattering (WAXS) and Small Angle X-

ray Scattering (SAXS) experiments the crystallinity, the type and amount of crystals and 

their lamellar thickness, among others, can be obtained [20,21]. However, for 

estimation of the mechanical properties of multi-layered all-PPCs, prepared at varying 

composite processing temperatures, the investigation of the thermally induced 

relaxation and structural transitions of the iPP fibres needed a simplified approach in the 

data evaluation of the X-ray patterns. The overall anisotropy was planned to be 

quantified by means of azimuthal scattering curves. 

Beside scattering methods, Polarized Raman spectroscopy proved to be effective 

to study regularity and structure of iPP fibres [22,23,24]. In the former studies, the ratio 

of Raman bands at 808 cm-1, representing the helical conformation of the chains present 
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in crystalline region, and 841 cm-1, representing the defects in the helix, was generally 

used to estimate the overall molecular orientation (including crystalline and amorphous 

phases) [23,25,26]. However, the structure of reinforcing iPP fibres embedded in a 

structurally similar polymer (rPP) matrix has not been investigated yet. For this 

purpose, the entire frequency range of the Raman spectra, collected from all-PPCs, was 

proposed to be evaluated by a multivariate evaluation method [27]. In this work, the 

classical least squares (CLS) model was selected for determining the relative 

macromolecular orientation of the reinforcing fibres and thus estimating their 

mechanical performance at the same time.  

 

2 Materials and methods 

2.1 Materials 

Highly oriented isotactic polypropylene (iPP) homopolymer multifilament 

(Stradom S.A., Poland) was used as reinforcement. The reinforcing multifilament has a 

melting temperature of 171°C, as determined by DSC from the first melting curve with 

a heating rate of 5°C/min (shown in Figure 1), single fibre diameter of 34.4 ± 1.1 µm, 

tensile strength of 581 ± 30 MPa and tensile modulus of 7687 ± 932 MPa (determined 

between strain levels of 0.1 and 0.3%), as measured in single fibre tensile tests.  

A propylene-ethylene copolymer (rPP) based thermoplastic elastomer (Versify 

4200, Dow Chemical Company, USA) was selected as matrix material. According to 

DSC measurements with a heating rate of 5°C/min, the rPP has a broad crystalline 

melting temperature range between 55 and 100°C with a peak temperature of 78°C (as 

can be seen from Figure 1). Accordingly, the processing window, approximated by the 
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difference between the melting temperatures of the reinforcement and matrix material, 

is about 70°C.  

60 ± 5 μm thick films were manufactured from the rPP granules by film extrusion 

technique using a Labtech LCR 300 laboratory flat film line (Labtech Engineering Co., 

Thailand).  

 

Figure 1 DSC curves of the iPP fibre and rPP matrix  

 

2.2 Composite preparation  

All -PPC sheets were prepared by filament winding followed by compression 

moulding process [28]. 5 plies of matrix films and 4 iPP multifilament layers were 

laminated tightly onto a 6 mm thick aluminium core (300 × 300 mm) in a filament 

winding process to obtain unidirectionally (UD) aligned fibres. The all-PPCs with a 

thickness of 1.7 mm and a nominal reinforcing multifilament content of 65 wt% were 

produced by compression moulding. The filament-wound laminates were consolidated 

at different temperatures; at 130, 140, 150, 160, 170 and 180°C, respectively, serving as 

series regarding molecular orientation of fibres and mechanical performance. The film-

stacked packages were inserted in between the preheated moulds and held for 300 s 

without pressure, then compressed for 420 s under a pressure of 1 MPa and finally 

cooled to 45°C (under pressure).  

2.3 Methods 

2.3.1 Tensile tests 

Comparative static tensile tests were performed on water jet cut rectangular 

composite specimens of 20 mm × 120 mm (width × length) (the gauge length was 70 
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mm) using a Zwick Z020 universal testing machine (Zwick GmbH & Co. KG, 

Germany) with a crosshead speed of 5 mm/min. Young’s modulus values were 

determined from the stress-strain curves between the strain levels of 0.1 and 0.5% (the 

specimen strain was measured by using a Messphysik ME 46 type (Messphysic, 

Austria) video extensometer). 

 

2.3.2 SAXS 

Small-angle X-ray scattering measurements were carried out on the CREDO 

instrument [29] of the Research Centre for Natural Sciences, Hungarian Academy of 

Sciences (Budapest, Hungary). The sample platelets were mounted on the sample holder 

without further treatment, the direction of the fibres being nearly vertical, as shown in 

Figure 2. X-rays were produced by a GeniX3D Cu ULD integrated beam delivery 

system (Xenocs SA, Sassenage, France), which consists of a microfocus Cu anode X-

ray tube (30 W nominal power, 30 µm thermal focus) operated at 50 kV and 0.6 mA 

and a FOX3D multilayer parabolic mirror. The divergence and the diameter of the X-

ray beam were limited by a 3-pinhole collimation scheme, resulting in a highly parallel 

beam of X-rays with a cca. 1 mm diameter [30]. Scattered photons were recorded using 

a Pilatus-300k CMOS hybrid pixel detector (Dectris Ltd, Baden, Switzerland), placed 

2415.8 mm downstream from the sample. This determined the resolved range of the 

momentum transfer (� = 4� sin� /�, where 2� is the scattering angle and � = 0.154 

nm is the X-ray wavelength of Cu Kα radiation) between 0.034 to 1.168 nm-1, 

corresponding to 182.5 to 5.4 nm Bragg distances. To minimize the effects of sample 

inhomogeneity, scattering images were recorded at 15 positions across the breadth of 

the sample, placed 0.8 mm apart (the diameter of the circular X-ray beam at the sample 

was cca. 1 mm). At each position, 12 exposures were made, each 120 second long. 
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Frequent re-measuring of the calibrant samples and instrumental background was also 

included in the procedure. All scattering patterns were corrected for instrumental 

background, sample self-absorption and geometrical distortions and normalized into 

absolute intensity units by the standard data reduction algorithm implemented in the 

instrument control software. The abscissa was calibrated from pixel edge length units 

into the scattering variable (�) using a pre-calibrated specimen of silver behenate. For 

the intensity calibration, a piece of glassy carbon with known scattering cross-section 

has been used. 

The distinct exposures were averaged for each sample and the ones affected by 

external radiation background have been excluded using statistical tests. Finally, the 

complete scattering images for each sample were radially averaged in the range of 

0.04 ≤ � ≤ 0.1 nm-1 to obtain azimuthal scattering curves, i.e. the intensity as a 

function of the azimuth angle of the scattering pattern. 

 

Figure 2 Schematic representation of the experimental setup for small-angle X-ray 

scattering 

 

2.3.3 Polarized Raman micro-spectroscopy 

Raman spectra were collected using a Horiba Jobin-Yvon LabRAM system 

coupled with an external 785 nm diode laser source and an Olympus BX-40 optical 

microscope. An objective of 50x magnification was used for optical imaging and 

spectrum acquisition. The laser beam is directed through the objective, and 

backscattered radiation is collected with the same objective. The collected radiation is 

directed through an edge filter that removes the Rayleigh photons, then it passes 

through  a confocal hole and the entrance slit and gets onto a grating monochromator 
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(950 groove mm−1) that disperses the light before it reaches the CCD detector. The 

spectrograph was set to provide a spectral range of 200–1400 cm−1 with a 2 cm−1 

resolution. 

The schematic representation of the experimental setup for Raman imaging is 

shown in Figure 3. The incident laser radiation propagates in the negative Z direction 

with polarization in Y direction. When a half-wave plate (λ/2) was inserted, the 

polarization direction of the linearly polarized light shifted to X direction. The UD 

composite samples were mounted horizontally with reinforcing fibres oriented in the Y 

direction in all cases, so thus the electric field of excitation was parallel (Y) or 

perpendicular (X) to the fibre orientation. 

 

Figure 3 Schematic representation of the experimental setup for Raman imaging 

 

Reference Raman spectra were collected from the matrix material (rPP) (test 

specimen was fabricated from a 2 mm thick plate obtained after hot-pressing the rPP 

granules at 160°C) and from the reinforcing iPP fibre in its original highly oriented 

form (iPPo-100%), and in its completely heat relaxed form (iPPo-0%) obtained after heat 

treating (melting) 5 g of iPP fibre at 180°C for 20 minutes in an oven (and let them cool 

without pressure). The Raman spectra of the references were collected with a 100x 

objective using an acquisition time of 90 s and averaging 3 measured spectra at each 

measured point.  

Raman spectra were collected along the depth of the composites to create line 

maps and to determine the optimal depth for two-dimension (2D) Raman mapping. 

Small area maps were collected with 50x objective (laser spot size: ~2.0 µm) and 6 µm 

and 12 µm step size in the X (perpendicular to the fibre orientation) and in the Y 
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direction (parallel to the fibre orientation), respectively. In each experiment the 

acquisition time of a single spectrum was 30 s and 3 such spectra were averaged at each 

pixel. The analysed area was 36 × 12 pixels, i.e. 210 × 132 µm2 in all cases. 

3 Results and discussion 

3.1 Tensile tests 

The tensile strength and modulus values determined for the examined all-PPCs 

prepared at different consolidation temperatures are summarized in Table 1. These data 

were used as reference for comparison of the estimated molecular alignment of the 

composites and reinforcing fibres by SAXS and Raman spectrometry, respectively. The 

Young’s modulus of the composites was found to be more sensitive to the increasing 

processing temperatures. It can be seen that the tensile strength of the all-PPC 

consolidated at 170℃, at the melting temperature of the used iPP fibre, is still 

approximately the same as that of the all-PPCs prepared at lower temperatures, but its 

tensile modulus already decreases by 45% compared to the all-PPC prepared at 130℃. 

The drop in tensile modulus while tensile strength remains constant can be explained by 

the fact that modulus is more dependent on the orientation of the amorphous phase, 

while tensile strength is more dependent on crystalline orientation and structural effects 

[31]. In agreement with this effect, even though the shrinkage of wound fibres is 

hindered, microstructural changes such as relaxation and thus noticeable decrease in 

tensile modulus can occur during processing into all-PPCs without any visible 

indications [32]. This observation highlights that the precise monitoring and control of 

the composite preparation parameters is crucial in respect to the product’s quality.  
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Table 1 Tensile strength and modulus of the all-PPCs prepared at different 

consolidation temperatures 

3.2 SAXS  

SAXS was used to characterize the anisotropy of the composites on the nanometre 

scale. The SAXS patterns of the samples, shown in Fig. 4, demonstrate strong 

dependence on the thermal prehistory and definite changes in the orientation. The most 

striking part is the high-intensity horizontal streak, which is a direct result of vertically 

extended scattering objects, typically the nanocrystallites in the iPP fibres. With 

increasing consolidation temperature these streaks decrease in intensity even below the 

melting point, but once this temperature is surpassed, they vanish completely, giving 

place of a new scattering signal in the vertical direction, which can be attributed to 

broken remnants of the original crystallites and isotropically recrystallized domains.  

 

Figure 4 Small-angle X-ray scattering patterns of the all-PPCs prepared at 

different consolidation temperatures 

 

The overall anisotropy can be quantified by means of azimuthal scattering curves. 

As the most significant changes to the anisotropy occur at the very small q-range, we 

have chosen the 0.05-0.1 nm-1 interval (a thin ring very near the centre of the image, just 

apart from the beam stop) to calculate the dependence of the intensity on the azimuth 

angle of the scattering pattern. The scattering curves are shown in Fig. 5. 

 

Figure 5 Azimuthal scattering curves of the all-PPCs in the range of 0.05-0.1 nm-1 
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As seen from the figure, the main peak pair (cca. at 90° and 270°) corresponds to 

the horizontal streaks. Additionally, another peak pair emerges at higher temperatures 

orthogonally to the previous two, at 0° and 180° (and of course 360°), as a contribution 

of the recrystallized iPP fibrils. To obtain a quantitative characteristic of the 

nanocrystalline system, the azimuthal curves were fitted in the least-squares sense with 

a model of two sets of Gaussian peaks, placed 180° apart. The peaks in each set had 

common height and width parameters. Additionally, a constant baseline term was used 

to model the isotropic scattering. 

The width of the horizontal streaks can be regarded as a measure of the orientation 

of the lamellas: the narrower the streaks, the better the crystallites are oriented. It can be 

expected that with the loss of orientation of the reinforcing iPP crystallites the stiffness 

of the material in that direction should also decrease. The strong correlation (coefficient 

of determination R2 = 0.983) between the Young’s moduli and the reciprocal of the 

width parameter of the peaks at 90° and 270° shown in Fig. 6 fulfils this expectation 

nicely. For closer examination of the changes of crystalline and amorphous orientation 

and to understand their contribution to the evolution of the macroscopic properties 

during processing, comparison of SAXS and WAXS measurements is planned. 

 

Figure 6 Correlation of Young’s moduli with the reciprocal width of the horizontal 

streak 
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3.3 Raman spectroscopy 

3.3.1 Depth profiling of orientation ratio by line mapping 

Orientation ratio (OR) along line maps was determined as proposed by Chen et al. 

as a simple and robust method for characterisation of the molecular orientation across 

the cross-section of extruded oriented polymer composite samples using polarized 

micro-Raman spectroscopy [33]. In Equation (1) I808 and I841 stand for the intensity of 

Raman bands at 808 and 841 cm-1, respectively. The X and Y in subscript denote 

whether the spectrum is collected with the electric field of the applied excitation beam is 

parallel or perpendicular to the direction of the iPP fibres. 

 �� =  
�808,�/�841,��808,�/�841,� (1) 

 

The OR for the all-PPC constituents was determined based on the spectra shown 

in Figure 7, and was calculated to be 9.3 for the iPP fibre and 1.4 for the hot-pressed 

rPP matrix material, respectively. The OR of 9.3 is a high value indicating very high 

draw ratio of the fibres, while for a completely relaxed sample the OR should be close 

to 1 as the polarization should not affect Raman spectra of isotropic materials.  

 

Figure 7 Y and X spectra of the rPP matrix and the iPP fibre 

 

Two line maps with differing polarisation directions (Y and X) were collected 

from the same, evenly spaced points from the surface into the core from each all-PPC 

sample. The obtained OR profiles, representing the changes in the overall orientation 

(including crystalline and amorphous phases), are shown in Figure 8. It can be seen that 
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the OR values increase with depth in all cases; in the first 50 µm radiation is mainly 

collected from the isotropic matrix material with low OR, then as we proceed deeper 

more and more photons are backscattered from the high-tenacity iPP fibres causing 

increase of the OR, while around 100 µm depth the OR reaches a plateau indicating that 

the majority of the photons are collected from the iPP fibres. It can also be observed that 

the maximal OR values calculated for the all-PPC samples decrease with increasing 

processing temperatures. A maximal OR of 9.1, close to that of the neat iPP fibre (9.3), 

was determined for the composite prepared at 130℃ indicating that at this processing 

temperature the reinforcing iPP fibre could maintain its highly ordered structure. In 

contrast, based on the noticeable lower maximal OR value of the all-PPC prepared at 

180℃, considerable structural changes (relaxation) of the reinforcing fibre were 

revealed. 

 

Figure 8 OR profiles collected from the surface region of the all-PPCs 

 

In Figure 9, fairly good correlation (Pearson’s r = 0.884) can be observed 

between the determined maximal OR values and the tensile moduli of the all-PPCs. The 

better the correlation the more accurate could be the Raman spectroscopy based indirect 

estimation of the mechanical performance of the all-PPCs. In order to improve the 

estimation accuracy, small-area maps, being more representative regarding the 

orientation state of the reinforcement, were analysed. 

 

Figure 9 Correlation of Young’s moduli with  the maximal OR determined for the 

all-PPCs 
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3.3.2 CLS modelling of small-area maps 

Raman mapping contributes to further understanding of the orientation and 

relaxation process through visualization of the structural changes (including overall 

molecular orientation and crystallinity) in all-PPCs. Based on the OR profiles given by 

the line maps in Figure 8, the Raman maps were decided to be collected from 125 µm 

depth from the surface of the composites. At this depth the intensity of the Raman 

scattering was still sufficient (much deeper sampling would have caused significant 

intensity loss). Furthermore, the multivariate evaluation of the Raman spectra was 

expected to increase the accuracy of the estimation of the morphological changes, 

including the degree of crystallinity and extent of overall macromolecular orientation, of 

the reinforcing iPP fibres. 

Reference Raman spectra were collected with excitation polarization in the Y 

direction from the highly oriented iPP fibre (iPPo-100%), from the fully relaxed iPP fibre 

(iPPo-0%) and from the matrix polymer (rPP) (Figure 10). The spectra collected from 

iPP fibre both in oriented and relaxed form match the typical Raman shifts of a semi-

crystalline iPP, the vibrational assignments are given in Table 2 [34]. The noticeable 

differences in the peak intensities and ratios of the highly oriented (iPPo-100%) and 

relaxed iPP fibres (iPPo-0%) provide a good basis for estimating the structure formation 

of the reinforcing fibres during composite processing including heat and compression 

exposure. In contrast, the rPP matrix shows great similarity to the spectrum of the heat 

relaxed iPP fibre (iPPo-0%), which makes the modelling and estimation fairly difficult. 

As for a solution, instead of evaluating only the Raman peak intensity ratios at 808 cm-1 

and 841 cm-1, as suggested by Paradkar et al. [25], CLS method was applied to the 

entire frequency range (200-1400 cm-1), providing better estimation for the orientation 

state of the iPP fibres embedded in rPP matrix.  
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Before chemometric evaluation, all spectra were baseline corrected and 

normalized in order to eliminate the intensity deviation between the measured points. 

The morphological changes (overall molecular orientation and crystallinity) of the 

reinforcing iPP fibres of the all-PPCs as a function of increasing consolidation 

temperature were evaluated in relation to the initial morphology of the reference 

constituents. The relative orientation state was determined by CLS modelling with the 

real reference spectra collected from iPPo-100%, iPPo-0% and rPP. Each Raman spectrum 

obtained from an all-PP composite is assumed as a linear combination of the three 

reference spectra. All changes in the spectra are equally weighted. The relative degree 

of orientation of the iPP fibre is estimated after subtracting the contribution of the 

matrix component. It is defined regarding its relation to the reference spectra of iPPo-

100%, being considered as 100% relative orientation state, and to iPPo-0% as 0% relative 

orientation state. 

 

Figure 10 Reference Raman spectra collected from iPPo-100%, iPPo-0% and rPP 

 

Table 2 Vibrational assignments for Raman bands of iPP [34] 

 

Raman maps were collected from 0.02772 mm2 area of each all-PPC prepared at 

consolidation temperatures between 130°C and 180°C and analysed using CLS method. 

The maps of iPPo-100% contribution calculated for the all-PPCs consolidated at different 

temperatures are shown in Figure 11. With increasing processing temperature the area 

of darker (blue or red) domains corresponding to the less ordered structures clearly 

increases. Below the starting temperature of the crystalline melt (158.5ºC) only slight 

relaxation occur during heat treatment, while above 160ºC the increasing mobility of the 
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polymer chains, trying to return to the thermodynamically stable coil state, results in 

noticeably decreased orientation degrees. Based on the uneven interfaces and smaller 

characteristic orientation degrees considerable molecular relaxation and infusion of 

fibre/matrix interfaces were evinced for the fibres embedded in the all-PPC prepared at 

170°C and 180°C. 

 

Figure 11 Maps of iPPo-100% contribution estimated for the all-PPCs  

 

The average relative degrees of orientation obtained from CLS modelling the small-

area Raman maps of the examined all-PPCs are shown in Figure 12 in relation to the 

composites’ Young’s moduli. Fairly strong correlation (Pearson’s r = 0.915) was 

evinced between the tensile moduli and the relative orientation degrees (estimated based 

on the polarized Raman maps of the all-PPCs), indicating improved adequacy of 

multivariate evaluation of small-area maps compared to the determination of orientation 

ratios of line maps. It can be noted, however, that Raman spectroscopy is sensitive to 

the overall chain conformation but insensitive to the lateral order of the crystalline 

phase, unlike SAXS technique. Furthermore, during CLS modelling all changes in the 

spectra are equally weighted, but the macroscopic properties like Young’s modulus may 

be more influenced by the variation of specific factors such as orientation of the 

amorphous region. 

In this work, the Raman spectra were acquired at an accumulation time of 30 s, but 

in situ results of Martin et al. [35] evidenced the ability of the Raman method to 

characterize molecular orientation also in real-time with less than 5 s time resolution. 

Transmission Raman spectroscopy may also offer rapid and even better sampling for 

solids than conventional backscatter Raman. It is presumed that Raman spectroscopy 
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based techniques can serve as core units of an on-line control loop aiming at the precise 

control of the manufacturing process (such as continuous double-belt pressing) of self-

reinforced composites, being especially sensitive to the preparation parameters (such as 

consolidation temperature, time, pressure, etc.). 

 

Figure 12 Correlation of Young’s moduli with  the estimated relative degree of 

orientation values in all-PPC samples 

 

4 Conclusions 

Both small-angle X-ray scattering and polarized Raman spectroscopy proved to be 

suitable methods to characterize the structure of reinforcing iPP fibres of all-PP 

composites in a non-destructive way. 

Small-angle X-ray scattering measurements helped to evince the changes of 

orientation in the iPP fibres on the nanometric level. Analysis of the anisotropy of the 

scattering pattern provided a way to quantify the disorientation of crystallites and a 

direct correlation has been found between a measure of orientation and the Young’s 

moduli of the composites.  

Based on the Raman spectra collected from the all-PPCs, the orientation states of 

the embedded iPP fibres were determined, as a new approach, by multivariate modelling 

with real reference spectra. Furthermore, visualization of the morphological changes 

could be performed through Raman mapping. The strong correlation evinced between 

the tensile moduli of the all-PPCs and the estimated relative orientation degrees of the 

iPP fibres served as proof for the adequacy of the elaborated method.  

Comparing the two methods, SAXS provides more subtle morphological details 

and accurate correlation, while the polarized Raman spectroscopy, due to its quick 
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sampling and flexibility, is suitable for establishing real time monitoring and Raman 

signal based process control. Thus it is expected to gain application in self-reinforced 

composite manufacturing and also in other fields where ordered structure of 

macromolecules is relevant. 
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