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Abstract. Our development goal was to create foamed polymer systems based on biodegradable 

and renewable resource-based polymers. We used polylactic acid (PLA) and several types of 

chemical foaming agents (endothermic and exothermic), and produced foam samples by 

extrusion. We characterized and analyzed the foam samples with a wide range of tests 

(determining the cell structure, void fraction, compressive strength, etc.). Based on our tests, we 

showed the difference between the foaming agents and produced PLA-based foams with a void 

fraction of 57%. 

1.  Introduction 

Today, with fast industrial development and rapidly increasing consumption, the need for packaging 

materials is increasing drastically. Most packaging is required by the food industry and the production 

of durable goods. The majority of these packaging materials, however, are one-way (single-use) 

packaging materials. The total production of the plastic industry was 322 million tonnes in 2015, and 58 

million tonnes in the European Union, a major part of which – 39.9% – was packaging industry products. 

At present, these products are made from petroleum-based polymers, typically polypropylene, 

polyethylene and polystyrene. At the end of their lifetime, disposing of them presents a major problem 

since they are not biodegradable.  

Based on the latest trends, poly(lactic acid) (PLA) is one of the strongest biopolymer candidates to 

replace petroleum-based polymers [1]. Bio-based and biodegradable PLA in a foamed structure can 

provide a possible marketable solution for engineering and costumer needs. There are various existing 

foaming techniques, like extrusion foaming [2], injection foaming, bead foaming [3] and syntactic 

foaming techniques are also [4,5]. Although the numerous article regarding PLA foams, there was no 

investigation regarding comparison the effect of endothermic and exothermic CBA effect on the PLA 

foaming behaviour in case of continuous extrusion foamed final product. 

In this article we present the application of different types of Chemical Blowing Agents (CBA) to 

produce foamed PLA based biopolymer structures via extrusion to characterise the resulting foam 

structures in correlation of the CBAs endothermic or exothermic nature. The matrix polymer was PLA 

(foaming grade). We chose foaming agents according to the literature, and the manufacturer’s 
information and recommendations. We used exothermic and endothermic CBAs. Extrusion was carried 

mailto:litauszkik@pt.bme.hu
mailto:kmetty@pt.bme.hu
http://creativecommons.org/licenses/by/3.0
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out on a twin-screw extruder. Each formulation contained 98m% PLA and 2m% blowing agent, and was 

produced with the same temperature profile, screw speed, and melt temperature. We investigated the 

resulting foamed products with a scanning electron microscope, and differential scanning calorimetry, 

cell-population and density measurements and compression tests to reveal and present the differences 

between endothermic and exothermic types of CBA. 

2.  Experimental 

2.1.  Materials 

A commercial grade of linear polylactic acid (Ingeo™ Biopolymer 8052D, NatureWorks© LLC, USA) 

was used as polymer matrix, in granule form. The D-lactide content of this PLA was 4.5 mol% [6]. Its 

density was 1.24 g/cm3, its glass transition temperature was 60.2 °C, its crystalline melting temperature 
was 153.3 °C, and its fraction of crystallinity before processing was 36.1%, which were measured by 
the authors. Two types of chemical blowing agents (CBA) were used, one exothermic (Tracel IM 3170 

MS, Tramaco GmbH) and one endothermic (Tracel IMC 4200, Tramaco GmbH). Both foaming agents 

were in granule form and contained a polymeric carrier. Characteristic properties of foaming agents can 

be found in Table 1. 

 

Table 1. Characteristic properties of foaming agents, according to product technical datasheet 

Blowing 

agent 
Type Effective gases 

Decomposition 

temperature 

[°C] 

Yield gas 

at 220°C 

[mL/g] 

Blowing 

agent 

content 

[%] 

Recommended 

dosage 

 [%] 

Tracel 

IM 3170 

MS 

Chemical 

blowing agent,  

Exothermic  

Azodicarbonamide, 

decomposes into: 

N2, CO, CO2, NH3 

170 50 30 1-2 

Tracel 

IMC 

4200 a 

Chemical 

blowing agent 

+ nucleating 

agent, 

Endothermic 

CO2, H2O 135-220 60 40 1-2.5 

a The active ingredients of the CBA are probably sodium bicarbonate and citric acid  
 

Table 2.  Notation for the experiment formulations 

Notation type of PLA  Name of CBA Type of CBA 
Dosage of CBA 

[m%] 

8052 Ingeo 8052D - - - 

8052_3170 Ingeo 8052D Tracel IM 3170 MS (exothermic) 2 

8052_4200 Ingeo 8052D Tracel IMC 4200 (endothermic) 2 
 

2.2.  Material processing 

Prior to manufacturing, the PLA granules were dried at 80°C for 6 hours in a WGL-45 drying oven. 

Before manufacturing, a fixed amount of chemical foaming agents was added by dry mixing to the 

poly(lactic-acid) at a rate of 2 m%, which resulted in a homogeneous mixture The extrusion chemical 

foaming process was performed with a Teach-line ZK25T twin-screw extruder produced by Collin 

GmbH (Figure 1.). The formulations and their notation can be found in Table 2. The temperature profile 

of the extruder was 155/165/175/190/190 °C; we used an increasing temperature profile, where zone 5 
(Z5) is the temperature of the extruder die. The pressure and temperature of the melt were monitored 



3

1234567890‘’“”

11th Hungarian Conference on Materials Science IOP Publishing

IOP Conf. Series: Materials Science and Engineering 426 (2018) 012031 doi:10.1088/1757-899X/426/1/012031

 

 

 

 

 

 

and registered. The rotation speed of the screw was 10 rpm. The extrusion die was a cord type with a 

circular cross-section, and with a nominal diameter of 3 mm. 

 

    
Figure 1. a) Extruder assembly used during the chemical foaming of poly(lactic-acid), 

b) foam extrusion 

3.  Methods of analysis 

3.1.  Thermal analysis 

Differential scanning calorimetry (DSC) measurements were performed with a TA Instruments Q2000 

automatic sampling device. The measurement temperature range was 0-200 °C, the heating rate was 
5 °C/min, the mass of the samples was between 3 mg and 6 mg, and the tests were performed in nitrogen 

protective gas (20 ml/min) and with a nitrogen measuring atmosphere (20 ml/min). The degree of 

crystallinity (�) was calculated according to Equation 1, where �� is the melt and �� is the 

crystallization enthalpies. PLA100% is the theoretical melting enthalpy of 100% crystalline PLA, which 

is 93 J/g [7]. 

 

                     � = � −|��|��� % ∗  [%] (1) 

3.2.  Characterisation of biopolymer foam structures 

The SEM images were produced with a JEOL JSM 6380LA scanning electron microscope with an 

acceleration voltage of 10 kV. The surfaces of the samples were gold plated in vacuum (Argon gas flush, 

15 mA/Pa).  

The volume of foam structures was measured with a 50 ml glass cylinder (accuracy 0.1 cm3); the 

measuring medium was distilled water. Mass was measured with a Sartorius BP121S type balance. Its 

range is 120 g, its measuring accuracy is 0.1 mg and its resolution is 0.1 mg. Density was calculated 

according to Equation 2. 

                     

                    ����� = � ��� ��  (2) 

 

Cell population density was calculated based on the SEM images, according to Eq. 3, where n [-] is the 

number of cells counted in the recorded image, A [mm2] is the cross section area of the sample, M [-] is 

magnification and Vf [-] is the void fraction. [6, 8] 

 

                   Nc = n∗MA ∗ 11−Vf  
 

(3) 

a) b) 
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This method not only takes into consideration the magnification applied, but corrects the density of the 

cell population with the expansion ratio, as well. The values thus calculated can be used to classify the 

relationships between processing and the foamed cell structure [6]. The expansion ratio can be calculated 
with Equation 4, where ER is the rate of expansion, ρrel is relative density and Vf is the void fraction [9]. 

 

                         �� = 1�� = 11−�    (4) 

3.3.  Mechanical characterisation 

Foam compressive strength tests were performed with a Zwick Z005 universal testing machine in 

compression mode. The load cell was a Mess & Regeltechnik KAP-TC type cell. Its range is 0-5000 N, 

the preload applied was 1 N. The measurement speed was 2 mm/min. The test piece was cylindrical, 

with a diameter of 3 mm and a height of 10 mm. The test was continued until a deformation of 10% was 

reached. Foam compressive strength was calculated with Eq. 5. 

 

              compressive strength = � %� ��   (5) 

4.  Results and discussion 

4.1.  Foam processing 

During foam extrusion, temperature was kept constant in the case of both formulations (195 °C ± 1 °C). 
Manufacturing parameters were also constant (within a range of ± 2 °C) except for melt pressure (Table 

3.). The extrusion parameters can be found in Table 3. Melt pressure was 43 bar without a CBA. When 

a foaming agent was used, a drop in melt pressure can be observed, regardless of the type of CBA. The 

lowest melt pressure, 13 bar, was in the case of the 8052_4200 formulation with endothermic CBA, 

which is a 70% pressure drop (pmelt) compared to the reference PLA. A possible cause is that the 

decomposition products of Tracel IMC 4200 include CO2 and H2O, therefore the PLA was likely 

hydrolysed and its melt strength was reduced. In the case of the 8052_3170 formulation with the 

exothermic CBA, the pressure drop of the melt is 51%, which is a not drastic reduction.  

 

Table 3. Manufacturing parameters registered during extrusion 

Formulation Extruder Extruder Adapter Die Tmelt pmelt pmelt 

- RPM Z1 Z2 Z3 Z4 Z5 T p p 

PLA_CBA 1/min °C °C °C °C °C °C bar % 

8052 10 155 162 176 189 191 195 43 - 

8052_3170 10 155 161 174 190 190 195 21 51 

8052_4200 10 155 159 175 191 190 196 13 70 

4.2.  Morphological structure of foams 

We calculated the number of cells formed along the cross section, based on the SEM images (Figure 2. 

- Figure 3.), and calculated cell population density. Then density was measured and void fraction was 

calculated. The resulting morphological structure was characterised by differential scanning calorimetry 

(DSC), then foam compressive strength was measured. The equipment and methods used for the 

measurements are presented in Chapter 3. 
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Figure 2. SEM image of foam, formulation 8052_3170, a) 20x b) 100x magnification 

 

Figure 3. SEM image of foam, formulation 8052_4200, a) 20x and b) 100x magnification 

 

Cell population density 

Cell population density was calculated based on SEM images (Figure 2. - Figure 3.). Based on the 

results, the most promising foaming agent is Tracel IMC 3170. The unoptimized manufacturing 

production experiment resulted in a cell population density of 4.82 – 5.61x105/cm3. These values are 

somewhat lower than the values of the foam structures produced by Julien et al. [10] (7.38 - 10.86x105), 

but they used an endothermic CBA (Hydrocerol OMAN698483), which product contains a nucleating 

agent. Mautana et al. [9] were able to approach 106 cells/cm3 with an optimized temperature profile, 

extruder speed and using 0.5-1.5% of an endothermic CBA. 

 

Density 

The results of density measurements (Table 4.) correlate well with the results expected based on the 

SEM images. The neat, unfoamed material (Ingeo 8052D) has a density of 1.24 g/cm3 and the lowest 

mass reduction was experienced with the 8052_4200 formulation. In the case of the 8052_3170 

formulation, the decrease in density was 57%. The values are typical in the case of foaming 

thermoplastic polymers [10], but these values go beyond the values for the chemical foaming of PLA 

described in the literature [7–10]. 

 

b) a) 

b) a) 
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Table 4. Density and void fraction, and cell population density (calculated from 

SEM images) of foam structures  

Sample Density [g/cm3] Void fraction [%] Cell population density [cell/cm3] 

8052_3170 0.53 57.6 4.82E+05 

8052_4200 1.00 19.1 5.58E+04 

 

We investigated commercially available polylactic acid (in granular form) as well as the structure of the 

PLA after extrusion and the structure of foams formed by chemical foaming (Table 5.). 
 

Table 5. DSC curves of different PLA samples and PLA foams, 1st heating up 

PLA 

type 

CBA 

type 

CBA 

[wt%] 

Tg 

[°C] 
Tcc 

[°C] 
Hcc 

[J/g] 

Tm1 

[°C] 
Tm2 

[°C] 
Hm 

[J/g] 

c  

[%] 

total 

[%] 

8052D - - 60.2 - - 153.3  36.4 36.1 36.1 

8052D 

(ext) 
- - 60.2 115.9 25.2 150.3 154.1 28.8 3.9 31.0 

8052D 
3170 

(exo) 
2.0 59.6 107.5 28.5 147.6 154.8 31.4 3.1 33.8 

8052D 
4200 

(endo) 
2.0 61.2 107.9 28.6 147.6 154.9 30.5 2.1 32.8 

 

 
Figure 4. a) DSC curves of PLA granules, extruded PLA and the produced foam structures  

(1st heating up)  

Figure 4. shows that that the commercially available (partially crystalline) PLA granule (8052) does not 

have an exothermic peak caused by cold crystallisation, but it appears in the case of the processed PLA 

(8052_1x ext) and chemically foamed samples. This is due to the fact that after processing the crystalline 

fraction cannot be formed because rapid (air) cooling leaves no time for the molecular chains to form 

ordered, crystalline regions. During the DSC measurement, the molecular chains are able to become 

more ordered, which is accompanied by heat release. These crystalline regions later melt at a higher 

temperature and the polymer melts. In case of the extruded (unfoamed and foamed) samples, the end of 

the cold crystallization process and the beginning of the melting process of the crystalline segments 

0 20 40 60 80 100 120 140 160 180 200

H
ea
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ow
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occur simultaneously and there is a sloping baseline between the two phenomena instead of a horizontal 

baseline.  

It is interesting that there are two crystalline melting peaks. Unlike the original granules, a second 

crystalline phase was formed with a lower crystal melting temperature after processing (8052D_ext) and 

in foam structures. Frackowiak et al. [13] explained the phenomenon with the fact that the α’ crystals of 
the lower temperature are smaller and were formed during the cold crystallization process, whereas the α crystal types having a higher melt temperature were formed during the primary crystallization process, 

therefore they can be connected to the technology in the present case [14]. Based on this, it can be stated 

that foaming agents affect the crystalline structure of the polymer. 

It can be noticed that after processing (compared to the reference PLA) only 3.9% crystalline part can 

form after rapid cooling. The unprocessed granules, however, have a crystalline fraction of 36%. 

Foaming further reduced the crystalline fraction, although only to a small extent. 

4.3.  Microscopic structure of foams 

The comparison of 20x magnification SEM images (Figure 2.-Figure 3.) clearly shows that the foam 

structure produced by the Tracel IMC 4200 is not suitable either from the point of view of cell nucleation 

or cell growth. This is a visible consequence of the hydrolysis process described in section 4.1., which 

occurs during production. The best performing foaming agent is Tracel IM 3170. The foam produced 

with this CBA contains a considerable amount of cells and the cells formed were able to grow, thereby 

enhancing the rate of expansion. Although the shape and location of the cells do not make the structure 

completely homogeneous, but still, Tracel IM 3170 MS is a promising foaming agent in contrast to 

Tracel IMC 4200. 

4.4.  Mechanical characterisation 

Figure 5. a) shows that a foam structure of a compressive strength of nearly 25 MPa was created with a 

significant reduction of density (57%), compared to the original PLA. The figure also shows two variants 

(XPS and EPS100) of one of the most widely used foams, polystyrene foam.  

 

 

 
Figure 5. a) Compressive strength of the manufactured foam structure as a function of density (EPS - 

Expanded polystyrene foam. XPS-Extruded polystyrene foam). b) Compression force-deformation (ε) 
diagram in case of formulation 8052_3170 

5.  Conclusions 

We performed several tests on the foam products in order to characterize them. Their density and void 

fraction were measured, then their structure and cell population density characterized based on SEM 
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images, and their morphological characteristics were measured by DSC. Finally, their compression 

strength was measured with a universal testing machine.  

In the case of the exothermic Tracel IM 3170 MS, a foam was formed and the reduction of its density 

was significant (57%). A proper cell structure developed without any technological optimization. In the 

case of the endodermic Tracel IMC 4200 foaming agent, the foam structure was not adequate. During 

the extrusion process, water was also formed as a decomposition product of the CBA, which very 

probably hydrolysed the polymer chains, thereby reducing the strength of the polymer melt. Its density 

decreased slightly compared to the neat, unfoamed polylactic acid and relatively few cells developed. 
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