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Abstract 

In a lot of applications composite sheets with great flexibility are desired to take up different 
3D shapes. Flexible composite sheets are used for example for roofs or tents in the 
architecture, tanks or containers in the transport industry, etc. To examine the flexibility of 
composite sheets we measured their bending rigidity with optical bending test equipment 
developed at the Department of Polymer Engineering, Budapest University of Technology and 
Economics. The equipment has an advantage opposite to traditional ones namely the 
measuring process works without mechanical contact. There are three laser lines projected 
onto the bended material that are stored on photos taken with a camera. Evaluating the 
measurement makes it possible to determine the bending stiffness and other bending 
properties of the flexible composite sheet specimen from the deflection curves or surface 
created by image processing and mathematical methods. The results of measurements can be 
used for modelling the bending behaviour of the composite sheets of more complicated 
shapes. With the obtained model we can predict the behaviour of composite sheets during 
their application.  

1 Introduction 
Simulating the drapability behavior of textiles basically requires the knowledge of their 
bending properties. The bending behavior of textiles is mainly characterized by the bending 
length measured by Cantilever Test developed by Peirce [1]. Another characteristic is the 
bending stiffness measured by the special bending tester instrument of KES-F system [2]. 
 
We present a measurement method working in a new optical way – similar to our formerly 
developed system for measuring fabric drape [3] – which makes it possible to determine the 
bending characteristic of textiles with application of image processing. 
 
During the measurement the fabric sample is gripped on its two ends and three laser lights are 
projected onto the sample deflecting freely between the two grips. The laser curves on the 
bended sample are recorded with a camera and their shape is determined by image processing 
making it possible to create a virtual surface of the bent sample. The bending characteristics 
and the data such as bending stiffness needed to simulate drape behavior are determined by 
mathematical methods from the determined shape.  
 
In this paper the instrument developed for measuring bending characteristics, and the way of 
measurement and evaluation are presented. 

2 Measuring Instrument 
The test table of the equipment consists of several element pairs (upper and lower sections) of 
the same dimensions. Upper sections can be turned up separately and the lowers can be turned 
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down separately, as well. During measurement a 100 mm x 600 mm specimen is laid on the 
turned down lower elements without strain and is fixed by turning down the upper elements. 
There is a non-slippery coating on the fixing elements. Due to the construction the bending 
effect can be measured at different lengths. During the measurement a suitable number of the 
upper fixed parts are turned up and the lower ones opposite to them are turned down. The 
specimen will deflect downwards because of gravity. There is a bijection between the 
mechanical parameters and the shape of the specimen. There are three laser projectors above 
the table and a camera. The camera takes the image of the projected laser lines (Figure 1.). 
 

 
Figure 1. Instrument for measuring bending properties of textiles 

 

3 Calibration and Image Processing 
In order to develop suitable measuring methods and achieve sufficient accuracy, the cross-sections in 
the photo had to be calibrated and errors had to be analyzed. 
 
Light-beams form planar curves in three positions. The points of curves are determined by image 
processing. For 3D scanning the plane to plane perspective transformation is a bijection. Perspective 
transformation with homogenous coordinates is a linear transformation [4] that projects quadrangle to 
quadrangle. The matrix of transformation (1) has eight independent coordinates. 
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Corners of a rectangular calibration element are appropriate to define the matrix coordinates (Figure 
2).  

Corners of calibration equipment are ( )i
y

i
x tt , , and corners of its picture are ( )i

y
i
x vv ,  (i=0, 1, 2, 3) and 

the transformation is shown in Equation (2). 
 

( )22 , yx tt ( ) ( )33 , yx tt 22 , yx vv   

 
Figure 2. Planar perspective projection 
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There are eight unknown coordinates and eight equations represented in formulas (3) in every plane 
[5]. 
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Determination of corner coordinates can be defined from the calibration photo (Figure 3). 
 

 
 

Figure 3. Calibrating rectangles 
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Different curves of beams can be processed from the picture (Figure 4). [6]. 
 

 
Figure 4. Measuring Process 

 

4 Estimation of bending parameters 

The strip-like specimen cut out of fabrics, fibrous mats, or flexible fiber reinforced 
composites is laid on a horizontal plate and gripped at both ends at span length Lo. After 
removing the supporting plate between the grips the specimen stretches under its weight and 
takes up a curved shape that is represented by the middle line in Figure 6. This middle line 
can be determined as a y(x) function from the image of the laser beams projected on the 
specimen using the developed suitable image processing methods. Before loading the initial 
geometrical parameters of the specimen of rectangular cross section are the cross section area 
(Ao=boho), the inertial moment (Io=ho

3bo/12), and the linear density (qo=ρAo) where bo and ho 
are the width and the thickness, respectively, and ρ is the volume density.  
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Figure 6. Shape of a fabric specimen and the displacement and deformation of a small segment due to forces and 

bending moments 
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Supposing that the material of the specimen is linearly elastic with finite tensile (AoE) and 
bending (IoE’) stiffness – E and E’ are the tensile and bending modulus, respectively – the 
equilibriums of forces and moments on a length segment ds provide the following equations 
(Figure 6): 
 

V'Ny
dx

dM;'ygq
dx
dV;ttanconsNN o −=+=== 21    (4) 

 
where q is the local linear density of the loaded specimen, y’ and y” are derivatives, g is the 
gravitational acceleration. The relationship between the bending moment and the local 
curvature (κ) is well known from the classical bending theory [7-10]: 
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where I is the inertial moment of the cross section of the loaded specimen. For wide 
specimens, if bo>6ho, E’ is to be calculated with the Young modulus (E) and the Poisson 
factor (ν) as follows [8]: 
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The crosswise contraction is taken into account with assuming volume permanence during 
deformation hence the cross section (A), the linear density (q), and the inertial moment (I) of 
the loaded specimen are as follows: 
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Combining all the equations obtained above the following differential equation can be 
derived: 
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In equation (8) the unknown parameters are E’ and No. They can be determined if the 
deflection curve, y(x), and the local strain ε(x) are known. To the latter Hooke’s law can be 
applied: 
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where F(x) is the tangent projection of the resultant force (Figure 7), for which the following 
equation is obtained in a way that tgα=y’ is taken into account, as well: 
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Figure 7. Tensile force (F) as the projection of the resultant in tangential direction 

 
By combining equations (4), (9), and (10) the local strain, ε(x), can be expressed with the 
derivatives of y(x). 
Using some simplifications described below the creation and use of another differential 
equation for ε(x) can be avoided besides retaining the effects of bending and stretching. 

(1) Neglecting displacement u(x) (u≡0 ⇒ x=xo ⇒ 1+ε= 21 'y+ ) leads to the following 
differential equation: 
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(2) Considering the mean strain (ε ) instead of the local one (ε) in equation (8): 
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where s(x) is the arc-length of the loaded specimen. 
 

(3) Neglecting the crosswise contraction (ε<<1) strongly simplifies equation (8): 
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where q  is the mean linear density of the loaded specimen: 
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Substituting the measured deflection function, y(x), into any of the simplified differential 
equations and considering that at the maximum deflection (x=0, y’(0)=0) and at any other 
point e.g. at the inflection point (x=xI, y”(xI)=0) or at the grip point (x=Lo/2, y’(0)=0) they 
provide two simply computable algebraic equations from which the sought parameters can be 
determined.  
 

6 Results 
The applicability of the measurement method on b=100 mm wide cotton fabric at Lo=300 mm 
grip length, i.e. span length was examined. The structural and geometrical data of the sample 
are summarized in Table 1. 

Type Yarn count Density Twist direction
Material 

warp weft 

Thickness 
[mm] 

Density
[g/m2] 

Type of
weave warp weft warp weft warp weft 

Cotton BD BD 0,44 158,6 plain Nm 34 Nm 34 27 22 Z S 

Table 1. Properties of measured fabric sample 

 
The mechanical properties of the examined fabric were determined with a Kawabata 
Evaluation System (KES) at the Department of Textile Materials and Design at the University 
of Maribor. The obtained tensile testing diagram is shown in Figure 8, while the bending 
diagram can be seen in Figure 9. The KES system is universally used and accepted 
equipment, hence the values obtained from it provide a good basis for comparison. 

 
Figure 8. Tensile test 

 
Figure 9. Bending test 
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The cross sectional inertial moment can be calculated based on the geometry of the examined 
sample. Using this data and the values measured with the KES system on the 200 mm wide 
samples gripped at 50 mm span length, the tensile and bending modulus of the fabric can be 
calculated. The results are summarized in Table 2. 
The points obtained with image processing from the photos of the deflecting textile are shown 
in Figure 10. Polynomials of different order are fitted onto the measurement points graphed in 
an x-y coordinate system. In case of the polynomials of fourth and sixth power correct 
behavior (touching horizontal level) could be prescribed, while in case of the second power – 
due to the low number of parameters – this is not possible. As Figure 10 reveals, a simple 
parabola of second power according to (15) fits to the line of points correspondent to the 
measured small deflection ratio (7…8)mm/300mm=0.023…0.027 well – except for the 
curvature at the ends; hence it is used together with equation (11) in order to determine the 
mechanical parameters according to chapter 5. There are no other significant points on the 
parabola – except for the minimum point – that can enhance calculation such as an inflection 
point or an end point with zero steepness. For this reason only information in the vicinity of 
the zero point was used in the simplified calculations, the aim of which were only 
demonstration, to determine bending stiffness, while the arising tensile force and average 
strain are estimated as free parameters.  Table 2 includes the results obtained with the 
parabola of second order and the estimation of tensile force. 
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Figure 10. Values measured with the Bending Tester and the fitted curve 
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  KES System Bending Tester 

Tensile force N0 [N] - 0.21 

Young modulus E [MPa] 18.18 19.54 

Bending modulus E’ [MPa] 0.817 0.820 
 

Table 2. Results obtained with the KES system and the Bending tester 

 
It can be concluded based on Table 2 and Figure 8 that the small value of fabric tensile force 
(0.21 N) – which is the resultant of the weight of the fabric band hanging down and the 
tension and loosening at the grip of the material that cannot be avoided – is 2.1 N/m projected 
on 100 mm length. This value falls in the immediate vicinity of the zero point that can be 
approximated with linearly flexible behavior. 
 The evaluation method is improved based on the application of polynomials of higher power; 
hence prescriptions for the several free parameters are to be used in a way that the real, usable 
data are provided without estimation. Therefore, the fact that the results obtained with the new 
measurement and evaluation method correspond well with the values determined with the 
KES system demonstrates that the new equipment and evaluation method will be applicable in 
the examination of the bending properties of textiles. 
 

5 Summary 
A contactless optical measuring method was developed for determining the bending 
properties among them the bending stiffness of textiles such as woven or knitted fabrics, 
fleeces, and mats. The shape of specimen deformed under its own weight is scanned by laser 
beams and recorded by a camera. Using suitable calibration the surface can be described by 
polynomial regressions that can be treated as the solution of a differential equation derived for 
the bent sample. After substituting the measured solution into the differential equation linear 
algebraic equations can be obtained from which the bending parameters can be estimated. The 
presented results compared to the values obtained with KES measurements demonstrate the 
applicability of the new measurement method that is still being developed. 
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