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Abstract 

The optical bending test equipment developed at the Budapest University of Technology and 
Economics has an advantage opposite to traditional ones namely the measuring process 
works without mechanical contact. There are three laser lines projected onto the bended 
material that are stored on photo taken by camera. The aim of the measurement is to 
determine the bending stiffness and other bending properties of the textile material from the 
deflection curves by image processing and mathematical methods. The measured 
parameters can be used in 3D simulation of the textiles tested. 

 

Introduction 

Simulating the drapability behaviour of textiles basically needs the knowledge of their 
bending properties. The bending behaviour of textiles is mainly characterized by the bending 
length measured by Cantilever Test developed by Peirce [1]. Other characteristic is the 
bending stiffness measured by the special bending tester instrument of KES-F system [2]. 
We present a measurement method working in a new optical way – similar to our formerly 
developed system for measuring fabric drape [3] – which make possible to determine the 
bending characteristic of textiles with application of image processing. 
During the measurement the fabric sample is griped on its two ends and three laser lights are 
projected onto sample deflecting freely between the two grips. The curves of laser curves on 
the bended sample are recorded by a camera and the shape of them is determined by image 
processing making possible to create a virtual surface of the bent sample. The bending 
characteristics and the data such as the bending stiffness needed to simulate drape 
behaviour are determined by mathematical methods from the determined shape.  
In this paper the instrument developed for measuring bending characteristics, and the way of 
measurement and evaluation are presented.  
 

Measuring Instrument 

The test table of the equipment consists of several element pairs of same dimensions of 
upper and lower sections. Upper sections can be turned up separately and the lowers can be 
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turned down separately as well. During measurement a 100 mm by 600 mm sized specimen 
is laid on the turned down lower elements strainlessly that is fixed by turning down the upper 
elements. There is an unslipping coat on fixing elements. Thanks for the construction the 
bending effect can be measured with different length. In case of measuring the upper fixed 
parts of suitable number are turned up and the lowers opposite them are turned down. 
Specimen will deflect down because of the gravity. There is a bijection between the 
mechanical parameters and the shape of specimen. There are three laser projectors above 
the table and a camera. The camera takes the image of the projected laser lines (Figure 1.). 

 

 

Laser beams 

Camera 

Figure 1. Instrument for measuring bending properties of textiles 

 

Calibration and Picture Processing 

In order to develop suitable measuring methods and achieve necessary accuracy, we had to 
calibrate the cross-sections on the photo as well as to analyze errors. 

Light-beams forms planar curves in three positions. Points of curve are determined by 
processing of pictures. For 3D scanning the plane to plane perspective transformation is a 
bijection. Perspective transformation by homogenous coordinates is a linear transformation 
[4] that projects quadrangle to quadrangle. The matrix of transformation (1) has eight 
independent coordinates. 
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Corners of a rectangular calibration element are appropriate to define of matrix coordinates 
(Figure 2).  

Corners of calibration equipment are ( )i
y

i
x tt , , and corners of its picture are ( )i

y
i
x vv ,  (i=0, 1, 2, 

3) and the transformation is shown in Equation (2). 

Laser lines on the 
sample 
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Figure 2. Planar perspective projection 
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There are eight unknown coordinates and eight equations represented by formulas (3) in 
every plane [5]. 
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Determination of corner coordinates can be defined from calibration photo (Figure 3). 
 

 
Figure 3. Calibrating rectangles 

We are able to process different curves of the beams from the picture (Figure 4). Upon the 
filtered points and calibrating rectangles 3D coordinates of the surface points are defined. 
The surface curves of the specimen are defined by polynomial regression (Figure 5) [6]. 
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Figure 4. Measuring Process 

 

 
Figure 5. Processed curves 

 
Estimation of the bending parameters 
 
The strip-like specimen cut out of fabrics, fibrous mats, or flexible fiber reinforced composites 

is laid on a horizontal plate and gripped at both ends with a span length Lo. After removing 

the supporting plate from between the grips the specimen stretches under its weight and 

takes up a curved shape that is represented by the middle line in Figure 6. This middle line 

can be determined as a y(x) function from the image of the laser beams projected on the 

specimen using suitable image processing methods developed. Before loading the initial 

geometrical parameters of the specimen of rectangle cross section are the cross section 

area (Ao=boho), the inertial moment (Io=ho
3bo/12), and the linear density (qo=ρAo) where bo 

and ho are the width and the thickness respectively, and ρ is the volume density.  
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Figure 6. Shape of a fabric specimen and the displacement and deformation of a small segment as an 

effect of forces and bending moments 
 
 

Supposing that the material of the specimen is linear elastic with finite tensile (AoE) and 

bending (IoE’) stiffnesses – E and E’ are the tensile and bending modulus respectively – the 

equilibriums of the forces and moments acted on a segment of length ds provide the 

following equations (Figure 6): 
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where q is the local linear density of the loaded specimen, y’ and y” are derivatives, g is the 

gravitational acceleration. The relationship between the bending moment and the local 

curvature (κ) is well known from the classical bending theory [7-10]: 

 

( ) 2321
/

y

y;'IEM
′+

′′
== κκ     (5) 

 
where I is the inertial moment of the cross section of the loaded specimen. For wide 

specimens, if bo>6ho, E’ is to be calculated with the Young modulus (E) and the Poisson 

factor (ν) as follows [8]: 

 

⎪⎩

⎪
⎨

⎧

>
−

≤
=

oo

oo

hb,E
hb,E

'E
6

1

6

2ν

     (6) 

 
The crosswise contraction is taken into account with assuming volume permanence during 

deformation hence the cross section (A), the linear density (q), and the inertial moment (I) of 

the loaded specimen are as follows: 
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Combining all the equations obtained above the following differential equation can be 

derived: 
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In equation (8) the unknown parameters are E’ and No. They can be determined in the 

knowledge of the deflection curve, y(x), and the local strain ε(x). To the latter the Hooke’s law 

can be applied: 
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where F(x) is the tangent projection of the resultant force (Figure 7) for which we obtain 

utilizing equation tgα=y’ as well: 
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Figure 7. Tensile force (F) as the projection of the resultant in tangential direction 
 
By combining equations (4), (9), and (10) the local strain, ε(x), can be expressed by the 

derivatives of y(x). 

Using some simplifications described below the creation and use of another differential 

equation for ε(x) can be avoided besides retaining the effects of bending and stretching. 

(1) Neglecting displacement u(x) (u≡0 ⇒ x=xo ⇒ 1+ε= 21 'y+ ) leads to the following 

differential equation: 
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(2) Considering the mean strain (ε ) instead of the local one (ε) in equation (8): 
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where s(x) is the arc-length of the loaded specimen. 
 

(3) Neglecting the crosswise contraction (ε<<1) strongly simplifies equation (8): 
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where q  is the mean linear density of the loaded specimen: 
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Substituting the measured deflection function, y(x), into any of the simplified differential 

equations and considering that at the maximum deflection (x=0, y’(0)=0) and e.g. at the 

inflection point (x=xI, y”(xI)=0) provides two algebraic equations from which the sought 

parameters can be determined.  

 
Summary 
 
A contactless optical measuring method was developed for determining the bending 

properties among them the bending stiffness of textiles such as woven or knitted fabrics, 

fleeces, and mats. The shape of specimen deformed under its own weight is scanned by 

laser beams and recorded by a camera. Using suitable calibration the surface can be 

described by polynomial regressions that can be treated as the solution of a differential 

equation derived for the bent sample. After substituting the measured solution into the 

differential equation linear algebraic equations can be obtained from which the bending 

parameters can be estimated. 

In a following paper we intend to report about the results obtained by applying this measuring 

and evaluating method. 

7 Aachen, November 26-27, 2009 



Poster 

8 Aachen, November 26-27, 2009 

Acknowledgements 
  

 

  

 
 
 
This work has been supported by the National Office for Research and Technology (NKTH) 

and by the Agency for Research Fund Management and Research Exploitation (OTKA) of 
the Hungarian Government with the K 68438 OTKA – NKTH and with the TR-17/2008, HR-

37/2008, SI-6/2007 S&T projects. 

 

Literature 
 

1. Peirce F. T.: The "handle" of cloth as a measurable quantity, The Journal of the Textile 
Institute 21, 377-416, (1930). 

2. S. Kawabata et al: Application of Objektive Measurement to Clothing Manufacture, 
International Journal of Clothing Science and Technology 48, (1992) 2, pp. 18-25. 

3. P. Tamás; J. Geršak; M. Halász: Sylvie 3D Drape Tester – New System for Measuring 
Fabric Drape, TEKSTIL, Zagreb, 2006/10, P 497-502, ISSN 0492-5882  

4. Szirmay-Kalos László, Antal György, Csonka Ferenc (2003): “Computer Graphics” 
Computer Books Budapest. 

5. D.K. Kim, B.T. Jang, C.J. Hwang (2002):”A Palanar Perspective Image Matching using 
Point Correspondesand Rectangle-to-Quadrilateral Mapping” Fifth IEE Southwest 
Symposium on Image Analysis and Interpretation 

6. Tamás, P., Halász, M., Gräff, J (2005): “3D Dress Design“ AUTEX World Textile 
Conference, Portorož, Slovenia. pp 436-440 

7. Williams J.G.: Stress Analysis of Polymers. Longman Group Ltd. London, (1973). 

8. Ponomarjov Sz. D.: Strength Calculations in the Mechanical Engineering. Vol. 2. Beams, 
Springs. (in Hungarian). Műszaki Könyvkiadó, Budapest. (1964). 

9. Muttnyánszky Á.: Szilárdságtan/Statics (in Hungarian) Műszaki Könyvkiadó, Budapest, 
(1981). 

10. Kaliszky S.: Mechanics II. Strength of Materials. (in Hungarian) Tankönyvkiadó, 
Budapest, (1990). 

 

 

 


	Abstract
	Introduction
	Summary
	Literature

