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Abstract
Multiple techniques for the reconstruction of anterior cruciate ligament (ACL) are available, 
most of which use implant made from metallic or bioabsorbable materials. Currently one of the 
most widely used fi xation methods for anterior cruciate ligament reconstruction with bone tendon-
bone graft is the interference screw. 
The aim of our work was to test custom design screw geometry, whether it is appropriate for ACL 
reconstruction. New screw was designed geometry for the work, so that screws with the same 
geometry could be produced for later work, from different materials. In this study injection 
molded biodegradable interference screws were tested on porcine femurs, with bone-patellar 
tendon-bone (BPTB) graft fi xation. The average failure load and the stiffness (772 ± 225 N and 
109 ± 33.9 N/mm respectively) of the fi xation was higher than literature average, although within 
standard deviation. Test results showed that the designed screw geometry is adequate for BPTB 
graft fi xation. 

Keywords: anterior cruciate ligament, BPTB, interference screw 

Introduction

Anterior cruciate ligament (ACL) reconstruc-
tion is one of the most common knee surgery 
since the ACL is torn most frequently in this 
joint. It causes in instability of the knee joint 
and requires surgical treatment in the active 
population. The success of ACL reconstruc-
tion is infl uenced by several factors. These 
include timing of the surgery, graft choice, 
tunnel placement, graft tensioning, graft fi xa-
tion methods, and the postoperative rehabili-
tation program1,2. One of the most important 
factors is the security of the graft fi xation3,4,5,
especially in the early postoperative period, 
because the advantages of early motion during 
an accelerated rehabilitation have been shown 
in different studies. Although it was also shown 
that during active full extension of the knee, 
the resultant forces produced in the graft can 

attain 200 N6,7, most researchers calculated with 
a maximum of 500 N daily load, and 450 N in 
an intensive rehabilitation program6,8.

In the past two decades many different fi xation 
method were developed, such as metal and bio-
degradable interference screws, post fi xations 
by screws, staples, buttons, sutures and oth-
ers9,10,11,12,13, and several new fi xation meth-
ods are under development14,15,16,17. Most of 
these techniques use implants from metallic 
or absorbable materials18,19, which are later 
surgically removed or are absorbed by the 
body. Exception is the press-fi t fi xation, dur-
ing which the BPTB graft is impacted into the 
bone without the help of foreign bodies20,21,22.
These methods for ACL reconstruction must 
ensure the ultimate tensile strength and stiff-
ness that allows the application of the current 
accelerated rehabilitation protocols7,23,24.
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Nowadays, the interference screw fi xation is 
one the most popular method in ACL recon-
struction, and there are several biomechanical 
studies proving its effi ciency and good mechan-
ical properties25,26,27,28,29,30,31.

During interference screw fi xation of the 
BPTB (bone-patellar tendon-bone) graft there 
is an interlock between the screw threads and 
the bone (the bone block attached to the graft 
and the bone of the tunnel). This is due to the 
triangular cross sectional dimensions of the 
screw thread in the direction parallel with the 
screw axis. When loaded under tension a large 
shearing force is therefore required to break 
either the bone that engages with the thread, 
or the thread of the interference screw and 
cause pull-out. Since the cancellous bone is 
weaker most times than the metallic or bioab-
sorbable screw, it is the bone that will brake. 

Fixation strength is mainly affected by the 
interlocking area of the screw, bone block and 
bone. The interlocking area is affected by the 
gap size, bone block cross-sectional shape, 
screw dimensions, etc. (Figure 1). Since both 
metallic and biomaterial used in orthopedic 
implants are stronger than cancellous bone the 
pull-out strength for identically shaped screws 

inserted with the same anatomical attributes 
(gap size, bone block cross-sectional shape, 
screw dimensions), should be similar32. The 
majority of original and review works show 
that bioabsorbable and metallic screws have 
similar failure loads33,34,35. Only a smaller 
number of works indicate that one screw is 
better than the other. In work reporting about 
comparative tests, most times only screw diam-
eter and maybe length match between the two 
screws, thread depths and profi le, head size, 
tine differ32,33.

The aim of our work was to produce a bio-
degradable interference screw with adequate 
screw geometry for ACL reconstruction with 
BPTB graft. Further research will include 
change of screw material and screw geometry 
(tine, thread depth, tapering length etc.)

Materials and methods

14 fresh porcine knees were used, from ani-
mals between 1–1.5 years and 100–130 kg. The 
harvesting of the distal femurs, patellae and 
the patellar tendons and the measurements 
took place within 24 hours after death. The 
specimens were kept in plastic bags to prevent 

Figure 1. Characteristics of the interference screw when used to fi x a bone block of the BPTB graft to 
the tunnel wall32

(a) End view (b) Side sectional view through bone tunnel and block

a) b)
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dehydration, and the prepared specimens were 
tested right after preparation.

The specimens were prepared by removing all 
the soft tissue from the distal femur. The fem-
oral tunnel was placed at the previous attach-
ment of the anterior cruciate ligament. The 
cortex was removed at that site with a conven-
tional drill, exposing the cancellous bone. The 
femoral tunnel was created with a conven-
tional 10 mm drill. 8 mm wide central patellar 
bone-tendon-bone graft was harvested from 
the patellar tendon. The patellar end of the 
bone-tendon-bone graft was placed into the 
femoral socket with the tendon positioned 
posteriorly. The patellar semicircular bone 
plug measured 8 mm in diameter and 25 mm 
in length. The tibial end bone-tendon-bone 
graft was used for securing the graft in the test-
ing machine.

The screws were injection moulded into a 
rapid prototyped mould from non medical 
grade PLA (NatureWoks 3051D) on an Arburg 
ALLROUNDER 320C injection molding 
machine. Medical grade materials was not 
necessary for the tests, as one of the main 
objective of this study was to test whether 
screw geometry and manufacturing technol-
ogy are adequate for further research. Effect of 
screw geometry and manufacturing technol-
ogy will be discussed in a later paper. 

Screw design was determined after consulting 
with practitioner surgeons, performing ACL 
reconstruction36. The length of tapering of the 
screw end was chosen to be 1/3 of the total 
screw length. The screw is fully cannulated, 
the screwdriver socket is hexagonal, and 17 mm 
deep. The pitch of the screw thread was cho-
sen 7°. The respective dimensions of the inter-
ference screw are illustrated in (Figure 2).

A computer-controlled testing device (Zwick 
Z020) was used for the pull-out tests. A spe-

cially designed holder was fi xed on the base of 
the testing machine, and the crosswise (medial 
to lateral) drilled femur was joined to it with a 
metallic bolt. The tibial bone end of the BPTB 
graft was secured to the crosshead of the test-
ing device (Figure 3). A pretension of 10 N was 
applied to the bone-patellar tendon complex 
and tensile-strength test was performed with a 
constant 200 mm/min speed along the longi-
tudinal axis of the tendinous part of the graft. 
Testing speed was chosen according to previ-
ous researches in this fi eld at our depart-
ment20.

The measured data were recorded on load-dis-
placement diagrams of the testing device (Fig-
ure 4). Failure mode was also recorded even it 
was pull-out from the tunnel, intra substance 
ligament rupture or femoral bone breakage. 
Stiffness was calculated as the slope of the 

Figure 2. Main dimensions of the interference 
screws in mm

Figure 3. Specimen preparation in Zwick testing 
machine (a) after pretension (b) during failure

a) b)
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most linear part of the force-versus-displace-
ment graph. Measured ultimate tensile strength 
and stiffness were compared to literature data.

Results

The results obtained from the pull-out test are 
summarized in Table 1. The mean failure load 
and stiffness was 772±225 N, 109±33.9 N/mm 
respectively. Four types of failure modes were 
recorded. In four cases the pull-out force was 
smaller than 100 N, these measurements were 

not evaluated as the specimen inspection indi-
cated a damaged tendon. In three cases the 
tendon tearing occurred after the stretching at 
the bone plug, leaving the bone plug and the 
screw behind. In four cases the tendon tore 
away from the bone plug, and in three cases the 
graft with the bone plug attached pulled out. 

Discussion

The fundamental purpose of this work was to 
test a custom designed interference screw for 
ACL reconstruction with BPTB graft. Custom 
design was necessary since further goal was to 
compare effect of material, screw geometry etc. 
Such work can not be done with commercially 
available screws, since these differ in size, 
thread type, tine etc.12,37,38. In comparative 
works the bioabsorbable and the metallic screw 
sometimes come from different manufacturer, 
thus ensuring different geometry32,33,34,35. Most 
times only screw diameter and maybe the 
length match between the two screws, thread 
depths and profi le, head size, tine differ32,33.
Currently there are only standards for metallic 
bone screw threads for medical application 
(Figure 5)37,39. Most manufacturers use these 
thread for both their metallic and bioabsorbable 
screws37,38. Our novel screw design resembles 

Figure 4. Force vs. 
displacement graphs 
of the valid tests

No.
Fmax
[N]

Stiffness
[N/mm]

Failure mode

No. 1  435 63.5 Tendon broke at bone plug

No. 2  841 138.5 Tendon broke 

No. 3  801 146.0 Tendon broke

No. 4  911 111.5 Graft pull out

No. 5  633 55.7 Tendon broke

No. 6  773 133.5 Graft pull out

No. 7  895 115.3 Graft pull out

No. 8 1237 147.5 Tendon broke

No. 9  654 104.2 Tendon broke at bone plug

No. 10  543 77.6 Tendon broke at bone plug

Mean  772 109.6

S.D.  225 33.9

Table 1. Results obtained from pull-out tests
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mostly the HC and HD thread type. The 
steepness of both upper and lower side of the 
thread is in between of those from the standard 
thread types. This thread type was chosen con-
sidering the manufacturability with injection 
molding, and was fi nalized after consulting 
with practitioner surgeons40. The thread type 
used in this study can be seen on Figure 7 com-
pared to standard medical treads.

One of the most important criteria for success-
ful anterior cruciate ligament reconstruction is 
the primary stability of the graft7,23,24. As well 
as the strength of the graft material used for 

the replacement, the fi xation is also of great 
concern with regard to the primary stability of 
the knee27,30. Several studies have found that 
during maximum tensile strength tests the fail-
ure occurs more often at the graft fi xation site 
than within the ligamentous tissue itself2,3,4,5.

During our work four types of failure modes 
were recorded, one of which resulted in the 
exclusion of the specimens from being evalu-
ated. In four cases the pull-out force was 

Figure 5. Standard metal bone screw threads for 
medical application compared to our own design37,39

Figure 7. Samples of the interference screws used 
in this study 

Figure 6. Sample of bioabsorbable interference fi xation devices: Absolute (Mitek), Intrafi x (Mitek), 
Bio-Cortical Distal (Arthrex), Sheathed Femoral (Arthrex), BioRCI HA (Smith & Nephew), 
Bioscrew (Linvatec), Bioscrew Xtralock (Linvatec), EndoPearl (Linvatec), Wedge (Linvatec), 

Gentle Threads (Arthrotek), and Bioabsorbable Wedge (Stryker) (left to right)41
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smaller than 100 N. In these cases after closer 
inspection it was concluded that the tendon 
was damaged during fi xation, which caused 
the premature failure of the graft. In three 
cases the tendon tearing occurred at the bone 
plug, after the stretching leaving the bone plug 
and the screw behind (Figure 8.a). In four 
cases the tendon tore further away from the 
bone plug, leaving the bone plug, the screw 
and a broken tendon behind (Figure 8.b).
In three cases the graft with the bone plug 
attached pulled out of the bone tunnel. In all 
cases the screws were recovered from the 
femurs, after testing. No visible damage could 
be observed on the recovered screws.

According to Noyes’42 the maximum failure 
strength of a human ACL was 1730 N with 
182 N/mm stiffness in young cadavers and 
734 N with 129 N/mm stiffness in old cadav-
ers. Savio Woo43 measured similar strength 
and stiffness (1503 N, 220N/mm) on intact 
ACL in middle-aged specimens at 30 degrees 
of knee fl exion and applied 200 mm/min strain 
rate. Newer studies indicate the ultimate load 
of an ACL of a young adult can reach up 
to 2500 N44,45, and can have a stiffness of 
306 N/mm46.

The results of this study show, that the custom 
designed interference screw achieved a mean 
maximum load of 770 N, which is slightly 

higher than literature average (Figure 9). Aver-
age stiffness was also well above reference data 
with 109 N/mm, but this is still far from the 
stiffness of a knee with an intact ACL. 

Since data published in the literature consider 
ACL reconstruction fi xation with maximum 
load above 450–500 N as adequate6,7,8, it was 
concluded that our custom designed interfer-
ence screw is appropriate for further researches. 
These will include different screw materials, 
and changes in screw geometry. 

Conclusions

The manufacturing technology used for the 
production of the screws is suitable for the pro-
duction of small series of medical implants 
that can be used for biomedical tests in cadav-

a)

Figure 8. Femur head after pull out tests (a) tendon separated from the bone, (b) tendon broke. 
In both cases the screw remained behind in the bone tunnel with cancellous bone from the graft

b)

Figure 9. Average pull-out force results compared 
to literature data32
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ers. The above average pull-out force does not 
indicate that the examined screw geometry is 
better than those available on the market, but 
does show that the custom designed interfer-
ence screw used in our work is adequate for 
ACL reconstruction with BPTB grafts. This 
means that this screw geometry is a good base 

for further research, concerning screw material 
or geometry (tine, thread depth, tapering 
length etc). The higher average pull-out force 
could have been caused by several factors, such 
as animal type, bone tunnel diameter, bone 
plug size, gap size etc. 
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