Anyagtulajdonságok modellezése és mérése fröccsöntési szimulációhoz Sikló B., Kovács J. G.

> Accepted for publication in Műanyag és Gumi Published in 2010 DOI:

Anyagtulajdonságok modellezése és mérése fröccsöntési szimulációhoz

Sikló Bernadett* PhD hallgató, Dr. Kovács József Gábor* egyetemi docens, laborvezető

1. Bevezetés

Napjainkban mindinkább elterjedt a számítógépes tervezés, amely nem zárul le a termék geometriai modelljének létrehozásával, hanem tovább folytatódik annak geometriai optimalizálásával és a gyártástechnológia szimulációjával. Az általános gépészeti tervezésben, de még inkább a műanyag-feldolgozásban a méretezési eljárások számos esetben olyan bonyolult rendszert képeznek, hogy azokat nem lehet analitikusan, zárt formában megoldani. A számítástechnika fejlődésével lehetővé vált a numerikus közelítési eljárások, azon belül a végeselemes módszerek (FEM) alkalmazása, amelyek korábban nagyon sok időt vettek igénybe. A tervezési és megmunkálási műveletek modellezését a számítógéppel segített modellezés (CAE) követte, amely jelentős térhódítással rövid idő alatt meghatározóvá vált a termékfejlesztésben. Napjainkban a polimer-feldolgozás minden területén alkalmaznak valamilyen számítástechnikai eszközt és módszert. Számítógépekkel oldanak meg rendkívül bonyolult módon egymásra ható áramlási és hővezetési feladatokat, ahol az áramlás geometriája igen összetett lehet, valamint a polimer a feldolgozás során fázisátalakulásokon (olvadás, megszilárdulás) megy át [1, 2].

A fröccsöntési szimulációs programok egy megoldó

algoritmusra épülnek, amelyet kiegészítenek az ahhoz csatolt további segédprogramok és adatbázisok (*1. ábra*). A program elméleti háttere a fizikai jelenségeket matematikailag leíró megoldó algoritmus, amely a számításokat az adott geometriára felvett végeselemes modellen elvégzi. Ez a leírás a folytonossági-, impulzus-, energiaés reológiai egyenleteken alapul, számos anyagi jellemzőt és technológiai paramétert igényel [1, 3–7].

A szimulációkban való alkalmazáshoz az anyagjellemzők mérési eredmények alapján történő matematikai modellekkel való leírására, a hozzájuk kapcsolódó állandók meghatározására, és azok szoftveres illesztésére van szükség. Az alkalmazott modellek felállításához meg kell határozni a polimerek feldolgozási jellemzőit. Ez technológiai oldalról az ömledék folyási, fajtérfogat-változási, illetve hőtani tulajdonságainak ismeretét jelenti. Munkánkban e jellemzőket határozzuk meg különböző tömegszázalékban üvegszállal erősített polipropilén esetén.

2. Polimerek folyási tulajdonságai

A polimereket a fröccsöntés során ömledék állapotban dolgozzuk fel, ezért ebből a szempontból a közben lejátszódó folyamatok ismerete nélkülözhetetlen. A termo-

1. ábra. A fröccsöntési szimulációs programok működési vázlata [1]

*Budapesti Műszaki és Gazdaságtudományi Egyetem, Polimertechnika Tanszék

plasztikus polimer ömledékek folyóképességén a

dinamikai viszkozitás re-

ciprokát értjük. Gyakor-

lati jellemzésére a folyá-

si mutatószám használa-

tos, melynek értékéből

pusztán arra lehet követ-

keztetni, hogy egy adott

anyag fröccsöntésre al-

kalmas vagy nem. Az

MFI a szimulációs szá-

mításokhoz nem hasz-

nálható, hiszen csak egy

- ráadásul igen alacsony

 nyírósebesség esetén jellemzi a folyóképességet. A fröccsöntés során ennél lényegesen nagyobb nyírósebességek lépnek fel, ezért elengedhetetlen a folyási tulajdonságok ismerete a nyírósebesség függvényében.

A polimer ömledékek viszkozitása az időtől, a nyomástól és a nyírósebességtől is függ, amelyet számos matematikai modellel lehet leírni. A Cross egyenlet széles nyí-

2. ábra. A Cross egyenletben szereplő n értelmezése

rósebesség tartományban használható (2. ábra).

$$\frac{\eta_0 - \eta_\infty}{\eta - \eta_\infty} = 1 + k \cdot \dot{\gamma}^{1/2} \tag{1}$$

A Cross egyenlet előnye, hogy nem hanyagolja el nagy nyírósebesség tartományban a viszkozitást ($\eta \infty$), de a szimulációs programok az egyenlet egy másik alakját használják:

$$\eta(T, \dot{\gamma}, p) = \frac{\eta_0}{1 + c(\eta_0 \cdot \dot{\gamma})^{(1-n)}}$$
(2)

Az egyenletben szereplő η_0 -t, amely a nyírósebességtől, a hőmérséklettől és a nyomástól függő, zérus nyírósebességhez tartozó viszkozitás, a következőképpen értelmezi:

$$\eta_0(T,p) = B \cdot e^{\left(\frac{T_b}{T}\right)} \cdot e^{\beta \cdot p}$$
(3)

Az η_0 meghatározásában szereplő tagok közül T_b a hőmérséklettényező, β a nyomástényező. A (2) kifejezésben szereplő *n* konstans pedig polimertől függően 0,25 és 1 között változó faktor. A program lehetőséget ad arra, hogy a mért viszkozitásfüggvény adatokból az egyenlet paramétereit meghatározzuk.

A *Moldflow* program a Cross egyenlet következő alakját használja a kitöltési szimulációhoz.

$$\eta(T, \dot{\gamma}, p) = \frac{\eta_0(T, p)}{1 + \left[\frac{\eta_0(T) \cdot \dot{\gamma}}{\tau^*}\right]^{(1-n)}}$$
(4)

A fenti egyenletben η_0 -t a következőképpen definiálja:

$$T > T_{trans} \rightarrow \eta_0(T,p) = B \cdot \exp\left(\frac{T_b}{T}\right) \cdot \exp(\beta \cdot p)$$

$$T < T_{trans} \to \eta_0(T, p) = \infty \tag{5}$$

A T_{trans} a fagyási hőmérséklet, ami megegyezik a T_g üvegesedési hőmérséklettel amorf polimerek esetén, illetve 30°C-kal alacsonyabb, mint a T_c kristályosodási hőmérséklet kristályos polimerek esetén.

Az egyenletnek ez a formája ötparaméteres (η , τ^* , B, T_b , β), amely jó közelítést adhat, hiszen szélesebb nyírósebesség tartományban alkalmazható az előző alaknál. A τ^* reprezentálja az átmenetet a newtoni és a közbülső szakasz között, amelynek meredekségét az (1-n) értéke írja le, ahol n a hatványtörvényben is szereplő hatványkitevő. Az egyenletben szerepel a maximális (zérus nyírósebességhez tartozó) viszkozitás no is, amelynek hőmérséklet-érzékenységét a T_b hőmérséklet írja le. Az η_0 nyomásfüggését a β paraméter határozza meg, amelyet legtöbb esetben el szoktak hanyagolni. A *B* konstans az η_0 értékét adja meg korrekciók nélkül. Ez a modell alkalmas a kitöltési folyamat közbeni számításhoz, mivel a hőmérsékletek ekkor többnyire a T_b felett maradnak. Széles hőmérséklet tartományokban, valamint ha a feldolgozási hőmérséklet a T_b alá esik, nem szerencsés ezt a modellt alkalmazni, ezért az utónyomások számításánál nem ezt használják a szimulációs programok.

A bemutatott Cross egyenlet hőmérséklet-független alakját, azaz a Cross-WLF egyenletet alkalmazza a legtöbb szimulációs program. A Cross egyenlet a WLF taggal kiegészítve alkalmassá válik az utónyomások számítására is, mert a hőmérséklet- és nyomásérzékenysége sokkal jobb lesz az η_0 tartományában.

Az egyszerű Cross egyenlethez képest való eltérés az η számításánál mutatkozik a WLF tag megjelenésével.

$$T \ge \widetilde{T} \to \eta_0(T,p) = D_1 \cdot \exp\left\{\frac{-\left[A_1 \cdot (T-\widetilde{T})\right]}{\left[A_1 + (T-\widetilde{T})\right]}\right\}$$
$$T < \widetilde{T} \to \eta_0(T,p) = \infty$$

ahol

$$A_2 = A_2 + D_3 \cdot p$$

$$\widetilde{T} = D_2 + D_3 \cdot p$$
(6)

Észrevehető, hogy az η_0 -t befolyásolja a nyomás is, ami a legtöbb esetben csak látszat, mivel a D_3 konstans a legtöbb esetben nullának választható, ezáltal azonos a D_2 konstanssal.

3. Polimerek fajtérfogat változása

Spencer és Gilmore [8] a polimer ömledék állapothatározóit a termodinamikából ismert gáztörvényhez hasonló egyenlettel írta le:

$$(p+\pi)(v-\omega) = \frac{RT}{M}$$
(7)

ahol *p* a hidrosztatikus nyomás, *v* a fajtérfogat, *R* az egyetemes gázállandó, *T* az abszolút hőmérséklet, *M* a polimerlánc monomer-egységének molekulatömege, π az anyagra jellemző nyomáskorrekciós állandó és ω a makromolekula saját térfogatát figyelembe vevő korrekciós állandó [9]. Ez az írásmód ugyan szemléletesen, valós fizikai jellemzőkkel írja le a fajtérfogat változását a hőmérséklet és a nyomás függvényében, de matematikai szempontból nehezen kezelhető, a szimulációs programba nem építhető be.

Ennél jóval gyakorlatiasabb a kéttartományú Tait egyenlet, amelyet a fröccsöntési szimulációs rendszerek is alkalmaznak [10–12]:

$$v(T,p) = v_0(T) \left[1 - C \cdot \ln \left(1 + \frac{p}{B(T)} \right) \right] + v_t(T,p)$$
(8)

ahol v(T, p) a fajtérfogat az adott hőmérsékleten és nyomáson, $v_0(T)$ a fajtérfogat környezeti nyomáson, T a hőmérséklet, p a nyomás, C = 0,0894 és B a nyomásérzékenységi tényező.

Az alsó, illetve a felső hőmérséklettartományt a T_t átmeneti hőmérséklet választja el, amely a nyomás függvényében a következőképpen változik:

$$T_t(p) = b_5 - b_6 \cdot p \tag{9}$$

ahol b_5 és b_6 konstansok.

– A felső hőmérséklettartományban, ahol a hőmérséklet nagyobb, mint az átmeneti hőmérséklet $(T > T_t)$:

$$v_0(T) = b_{1m} + b_{2m} \cdot (T - b_5) \tag{10a}$$

$$B(T) = b_{3m} \cdot \exp[-b_4 \cdot {}_m(T-b_5)]$$
(10b)

$$v_t(T,p) = 0 \tag{10c}$$

ahol b_{1m} , b_{2m} , b_{3m} , b_{4m} és b_5 konstansok.

– Az alsó hőmérséklettartományban, ahol a hőmérséklet kisebb, mint az átmeneti hőmérséklet ($T < T_t$):

$$v_0(T) = b_{1s} + b_{2s} \cdot (T - b_5) \tag{11a}$$

$$B(T) = b_{3s} \cdot \exp[-b_{4s} \cdot (T - b_5)]$$
(11b)

$$v_t(T,p) = b_7 \cdot exp[b_8 \cdot (T - b_5) - (b_9 \cdot p)]$$
(11c)

ahol b_{1s} , b_{2s} , b_{3s} , b_{4s} , b_5 , b_6 , b_7 , b_8 és b_9 konstansok.

4. Anyagvizsgálatok

BRABENDER *Plasticorder 814402* típusú kétcsigás extruderen állandó csigafordulatszámot alkalmazva 10, 20 és 30 m% üvegszál erősítésű polipropilén (BOREALIS *Daplen HD120MO*) keveréket készítettünk, melyet granuláltunk. Ezen alapanyagok jellemzői nem találhatók meg a fröccsöntési szimulációs program adatbázisában, ezért van szükség ezek kísérleti meghatározására.

4.1. Viszkozitásmérés

Az MFI értékeket CEAST *Modular Melt Flow* 7027.000 típusú MFI berendezésen 230°C-on, 2,16 kg terhelés mellett határoztuk meg. A három alapanyag, PP-GF10, PP-GF20 és PP-GF30, MFI értéke rendre 5,1, 3,9, és 3,1 g/10 min volt.

Mivel a folyási mutatószám nem alkalmazható szimulációknál, ezért a viszkozitás értékeket ZWICK *Z050* típusú, számítógép vezérlésű szakítógépre szerelt kapillár viszkoziméterrel határoztuk meg. Három különböző kapillárissal, 200, 230 és 260°C-on dolgoztunk 5, 10, 20, 50, 100, 200, 500 mm/min sebességeknél. A *3. ábr*a a 30 m% üvegszál erősítésű PP viszkozitását három hőmérsékleten, míg a *4. ábra* az eltérő üvegszál tartalom viszkozitásra gyakorolt hatását mutatja 200°C-on.

A mérési adatokra illesztett viszkozitásgörbék alapján

4. ábra. Különböző mértékben szálerősített PP viszkozitásgörbéi 200°C-on

PP alapanyagok Cross-WLF paraméterei				
	PP-GF10	PP-GF20	PP-GF30	
<i>n</i> , –	0,3856	0,3604	0,2528	
τ*, Pa	5853,21	7902,43	26 678,2	
D_1 , Pa•s	1,3969•1016	3,60286•1012	1,26132•1014	
D ₂ , K	263,15	263,15	263,15	
<i>D</i> ₃ , К/Ра	0	0	0	
$A_{1}, -$	29,801	25,33	30,682	
A2~, K	51,6	51,6	51,6	

1. táblázat.

határoztuk meg a Cross-WLF egyenlet (6) állandóit (1. táblázat).

Ezekkel az állandókkal PP-GF30 esetén a Cross-WLF egyenlet (12) szerint alakul:

$$T \ge T \to \eta_0(T,p) =$$

$$= 1,26132 \cdot 10^{14} \cdot \exp\left\{\frac{-[30,682 \cdot (T - \tilde{T})]}{[51,6 + (T - \tilde{T})]}\right\}$$

$$T < \tilde{T} \to \eta_0(T,p) = \infty$$
(12)
where $T = 263.15$

anol $A_2 = 51, 6, T = 263,$

4.2. pvT mérés

Az alapanyagok fajtérfogat-változását GöTTFERT *Rheograph 75* típusú kapillárreométerrel vizsgáltuk, mindhárom alapanyag esetén 8 nyomás (10–175 MPa) és 12 hőmérsékleti érték mellett (65–260°C). A PP-GF30 fajtérfogat változását az 5. *ábra* szemlélteti. A polipropilén fajtérfogata az üvegszál tartalom növekedésével azonos nyomás mellett csökkent (*6. ábra*).

A mért értékből görbeillesztéssel határoztuk meg a Tait egyenlet állandóit (*2. táblázat*).

Ezekkel a konstansokkal PP-GF30 esetén a (9)–(11) kifejezések a (13)–(15) összefüggések szerint alakulnak:

5. ábra. PP-GF30 pvT görbéje

6. ábra. Különböző száltartalmú PP minták fajtérfogat változása 1 MPa nyomáson

2. táblázat. PP alapanyagok Tait paraméterei

	PP-GF10	PP-GF20	PP-GF30
<i>b</i> ₅ , K	432,15	432,15	432,15
<i>b</i> ₆ , К/Ра	7,6.10-8	7,9.10-8	1,245 • 10-7
b_{1m} , m ³ /kg	0,001185	0,001102	0,001017
b_{2m} , m ³ /kgK	1 • 312 • 10-6	1,082 • 10-6	1 • 10-6
<i>b</i> _{3<i>m</i>} , Pa	7,01244 • 107	6,59553 • 10 ⁷	6,28106 • 10 ⁷
<i>b</i> _{4m} , 1/K	0,006854	0,005768	0,004323
b_{1s} , m ³ /kg	0,001049	0,0009814	0,0009031
b_{2s} , m ³ /kgK	3,119 • 10-7	3,73 • 10-7	2,605 • 10-7
b_{3s} , Pa	2,48835 • 10 ⁸	2,03556 • 10 ⁸	2,32132 • 108
<i>b</i> _{4s} , 1/K	0,001543	0,005795	0,00623
<i>b</i> ₇ , m ³ /kg	0,0001358	0,0001205	0,0001137
<i>b</i> ₈ , 1/K	0,1183	0,1246	0,05476
<i>b</i> ₉ , 1/Pa	1,513 • 10-8	1,618 • 10-8	1,346 • 104

$$T_t(p) = 432,15 - 1,245 \cdot 10^{-7}p \tag{13}$$

- A felső hőmérséklettartományban:

$$v_0(T) = 0,001017 + 10^{-6} \cdot (T - 432, 15)$$
(14a)

$$B(T) = 6,281 \cdot 10^{7} \cdot \exp[-0,004323 \cdot (T - 432,15)]$$
(14b)

$$v_t(T,p) = 0 \tag{14c}$$

- Az alsó hőmérséklettartományban:

$$v_0(T) = 0,0009031 + 2,605 \cdot 10^{-7} \cdot (T - 432,15)$$
 (15a)

$$B(T) = 2,32132 \cdot 10^{8} \cdot \exp[-0,00623 \cdot (T - 432,15)] \quad (15b)$$

$$v_t(T,p) = 0,0001137 \cdot \exp[-0,05476 \cdot (T-432,15) - (1,346 \cdot 10^{-8} \cdot p)]$$
(15c)

4.3. Hőtani jellemzők

A polimerek hőtani tulajdonságainak ismerete is szükséges a modellekhez, melyekre nem léteznek külön függvények. Ezek a jellemzők a hőmérséklet függvényében változnak, értékük táblázatos formában adható meg. Ilyen szükséges anyagjellemző a hővezetési tényező, a fajhő, illetve a kristályosodási hőmérséklet. A hővezetési tényező meghatározására ún. hot-plate méréssel nyílik lehetőség.

A polimer fajhőjét és a kidobási hőmérséklet megállapításához szükséges kristályosodási hőmérsékletet PER-KIN-ELMER *DSC-2* típusú pásztázó kaloriméterrel határoztuk meg. A fűtési program 320-ról 500 K-re 20°C/min sebességű felfűtéssel indult, amit 2 perces hőntartás követett, majd 20°C/min sebességű visszahűtést ismét azonos sebességű 500 K-re való felfűtés követett. PP-GF10, PP-GF20 és PP-GF30 kristályosodási hőmérsékletét rendre 114, 115 és 115°C-nak adódott, fajhőjük 2800, 2432 és 1758 J/(kg•K) volt.

5. Összefoglalás

Munkánk célja az volt, hogy az általunk készített 10, 20, illetve 30 m% üvegszál tartalmú polipropilén viszkozitás, hőtágulási és kompresszibilitási, valamint hővezetési, fajhő és kristályosodási hőmérséklet adatait a szimulációs programba exportáljuk.

A cikk a Bolyai János Kutatási ösztöndíj támogatásával készült. Köszönjük továbbá az Arburg Hungária Kft.nek az Arburg Allrounder 320C 600-250 típusú fröccsöntőgépet. A munka szakmai tartalma kapcsolódik a "Minőségorientált, összehangolt oktatási és K+F+I stratégia, valamint működési modell kidolgozása a Műegyetemen" című projekt szakmai célkitűzéseinek megvalósításához. A projektet az ÚMFT TÁMOP-4.2.1/B-09/1/KMR-2010-0002 programja támogatja.

Irodalomjegyzék

- Dunai, A.; Macskási, L.: Műanyagok fröccsöntése, Lexica Kft., Budapest, 2003.
- [2] Beaumont, J. P.; Nagel, R.; Sherman, R.: Successful injection molding, Hanser Publishers, Munich, 2002.
- [3] Shoemaker, J.: Moldflow design guide, Hanser Publishers, Munich, 2006.
- [4] Kennedy, P.: Flow analysis of injection molds, Hanser Publishers, Munich, Vienna, New York, 1995.
- [5] Kovács, J. G.: Fröccsöntési technológia tervezése és modellezése számítógépes szimulációs programmal, Műanyag és Gumi, 37/9, 316–325 (2000).
- [6] Kovács, J. G.: Fröccsöntési szimulációs programok elemzése, Műanyag és Gumi, 38/9, 350–358 (2001).
- [7] Shen, Y. K.; Yeh, P. H.; Wu, J. S.: Numerical simulation for thin wall injection molding of fiber-reinforced thermoplastics, International Communications in Heat and Mass Transfer, 28, 1035–1042 (2001).
- [8] Spencer, R.; Gilmore, G.: Journal of Applied Polymer Science, 20, 502 (1949).
- [9] Progelhof, R. C.; Throne, J. L.: Polymer engineering principle, properties, processes, tests for design, Hanser Publishers, Munich, 1993.
- [10] Osswald, T. A.; Tung, L-S.; Gramann, P. J.: Injection molding handbook, Hanser Publishers, Munich, 2001.
- [11] Moldflow Plastics Insight Help, Moldflow Corporation, 2005.
- [12] Kovács, J. G.: Injection molding and simulation using short fiber reinforced materials, Abstracts of Conference on Reinforced Materials 2002, Balatonfüred, Hungary, 2002, p. 5.